#ifndef _EiC
#include "cv.h"
#include "highgui.h"
#endif

#pragma comment(lib,"highgui.lib")
#pragma comment(lib,"cxcore.lib")
#pragma comment(lib,"cv.lib")
#pragma comment(lib,"ml.lib")
#pragma comment(lib,"cvaux.lib")
#pragma comment(lib,"cvcam.lib")

int main( int argc, char** argv )
{
    #define MAX_CLUSTERS 5
    CvScalar color_tab[MAX_CLUSTERS];
    IplImage* img = cvCreateImage( cvSize( 500, 500 ), 8, 3 );
    CvRNG rng = cvRNG(-1);
    CvPoint ipt;

    color_tab[0] = CV_RGB(255,0,0);
    color_tab[1] = CV_RGB(0,255,0);
    color_tab[2] = CV_RGB(100,100,255);
    color_tab[3] = CV_RGB(255,0,255);
    color_tab[4] = CV_RGB(255,255,0);

    cvNamedWindow( "clusters", 1 );
        
    for(;;)
    {
        char key;
        int k, cluster_count = cvRandInt(&rng)%MAX_CLUSTERS + 1;
        int i, sample_count = cvRandInt(&rng)%1000 + 1;
		/*
		(2) 矩阵数据类型:
			   CV_<bit_depth>(S|U|F)C<number_of_channels> 
			   S = 符号整型
			   U = 无符号整型
			   F = 浮点型
		*/
        CvMat* points   = cvCreateMat( sample_count, 1, CV_32FC2 );
        CvMat* clusters = cvCreateMat( sample_count, 1, CV_32SC1 );
        
        /* generate random sample from multigaussian distribution */
        for( k = 0; k < cluster_count; k++ )
        {
            CvPoint center;
            CvMat point_chunk;
            center.x = cvRandInt(&rng)%img->width;
            center.y = cvRandInt(&rng)%img->height;
            cvGetRows( points, &point_chunk, k*sample_count/cluster_count,
                       k == cluster_count - 1 ? sample_count :
                       (k+1)*sample_count/cluster_count, 1 );
                        
            cvRandArr( &rng, &point_chunk, CV_RAND_NORMAL,
                       cvScalar(center.x,center.y,0,0),
                       cvScalar(img->width*0.1,img->height*0.1,0,0));
        }

        /* shuffle samples */
        for( i = 0; i < sample_count/2; i++ )
        {
            CvPoint2D32f* pt1 = (CvPoint2D32f*)points->data.fl + cvRandInt(&rng)%sample_count;
            CvPoint2D32f* pt2 = (CvPoint2D32f*)points->data.fl + cvRandInt(&rng)%sample_count;
            CvPoint2D32f temp;
            CV_SWAP( *pt1, *pt2, temp );
        }

        cvKMeans2( points, cluster_count, clusters,
                   cvTermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0 ));

        cvZero( img );

        for( i = 0; i < sample_count; i++ )
        {
            int cluster_idx = clusters->data.i[i];
            ipt.x = (int)points->data.fl[i*2];
            ipt.y = (int)points->data.fl[i*2+1];
            cvCircle( img, ipt, 2, color_tab[cluster_idx], CV_FILLED, CV_AA, 0 );
        }

        cvReleaseMat( &points );
        cvReleaseMat( &clusters );

        cvShowImage( "clusters", img );

        key = (char) cvWaitKey(0);
        if( key == 27 || key == 'q' || key == 'Q' ) // 'ESC'
            break;
    }
    
    cvDestroyWindow( "clusters" );
    return 0;
}