基于机器学习的广告定向推荐系统是指利用机器学习算法,根据用户的历史行为数据和其他相关数据,推荐最有可能吸引用户的广告。该技术可以应用于广告投放、电商推荐等领域。

以下是一个基于机器学习的广告推荐系统的示例代码:

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# 加载数据集
data = pd.read_csv('ad_data.csv')

# 划分训练集和测试集
train_data, test_data = train_test_split(data, test_size=0.2)

# 构造特征和标签
train_features = train_data.iloc[:, :-1]
train_labels = train_data.iloc[:, -1]
test_features = test_data.iloc[:, :-1]
test_labels = test_data.iloc[:, -1]

# 训练模型
model = LogisticRegression()
model.fit(train_features, train_labels)

# 预测测试集
pred_labels = model.predict(test_features)
accuracy = accuracy_score(test_labels, pred_labels)
print("Accuracy:", accuracy)

# 输出各特征的系数
coef = pd.DataFrame(model.coef_.T, index=train_features.columns, columns=['coef'])
print("Feature coefficients:\n", coef.sort_values('coef'))

# 输出每个广告的点击率
ad_ctr = data.groupby('ad_id')['clicked'].mean().reset_index()
ad_ctr.columns = ['ad_id', 'ctr']
print("Ad click-through rates:\n", ad_ctr.sort_values('ctr', ascending=False))

此代码实现了一个简单的广告推荐系统,使用逻辑回归作为分类器,根据历史数据训练模型,预测测试集的标签,并计算准确率。特征包括广告位、广告主、广告类型、广告大小等,标签为广告是否被点击。最后输出各特征的系数和每个广告的点击率。

在运行以上代码之前,需要先准备好广告历史数据集,包括广告位、广告主、广告类型、广告大小等特征,以及标签,即广告是否被点击。

以下是一些相关的文献和链接:

当前市场上,一些基于机器学习的广告推荐系统产品包括: