1.矩阵的秩
2,.向量组的秩
3.关系

关系

矩阵的秩就是向量组的秩
即3秩相等定理

1.定义不同

1、向量组bai的秩为线性代du数的基本概念,它表示的是一个zhi向量组的极大线dao性无关组所含向量的个数。由向量组的秩可以引出矩阵的秩的定义。

2、矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rank A。

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

求解过程

1、向量组的秩:一个m行n列的矩阵可以看做是m个行向量构成的行向量组,也可看做n个列向量构成的列向量组。行向量组的秩成为行秩,列向量组的秩成为列秩。

2、矩阵秩:一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

求解目的

1、向量组的秩:向量组的秩为线性代数的基本概念,它表示的是一个向量组的极大线性无关组所含向量的个数。由向量组的秩可以引出矩阵的秩的定义。

2、矩阵秩:矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rank A。

应用
向量组的秩

1、根据向量组的秩可以推出一些线性代数中比较有用的定理向量组α1,α2,···,αs线性无关等价于R{α1,α2,···,αs}=s。

2、若向量组α1,α2,···,αs可被向量组β1,β2,···,βt线性表出,则R{α1,α2,···,αs}小于等于R{β1,β2,···,βt}。

3、等价的向量组具有相等的秩。

4、若向量组α1,α2,···,αs线性无关,且可被向量组β1,β2,···,βt线性表出,则s小于等于t。

向量组α1,α2,···,αs可被向量组β1,β2,···,βt线性表出,且s>t,则α1,α2,···,αs线性相关。

5、任意n+1个n维向量线性相关。

矩阵的秩

有向量组的秩的概念可以引出矩阵的秩的概念。一个m行n列的矩阵可以看做是m个行向量构成的行向量组,也可看做n个列向量构成的列向量组。

行向量组的秩成为行秩,列向量组的秩成为列秩,容易证明行秩等于列秩,所以就可成为矩阵的秩。矩阵的秩在线性代数中有着很大的应用,可以用于判断逆矩阵和线性方程组解的计算等方面。