本文是基于博文《​​ElasticSearch之——文档增删改查​​》一文中,创建的索引文档进行的,请先阅读博文《​​ElasticSearch之——文档增删改查​​》。

1、第一个分析需求

计算每个tag下的商品数量

GET /ecommerce/product/_search
{
"aggs": {
"group_by_tags": {
"terms": { "field": "tags" }
}
}
}

将文本field的fielddata属性设置为true


PUT /ecommerce/_mapping/product
{
"properties": {
"tags": {
"type": "text",
"fielddata": true
}
}
}
GET /ecommerce/product/_search
{
"size": 0,
"aggs": {
"all_tags": {
"terms": { "field": "tags" }
}
}
}

2、第二个聚合分析的需求

对名称中包含yagao的商品,计算每个tag下的商品数量

GET /ecommerce/product/_search
{
"size": 0,
"query": {
"match": {
"name": "yagao"
}
},
"aggs": {
"all_tags": {
"terms": {
"field": "tags"
}
}
}
}

3、第三个聚合分析的需求

先分组,再算每组的平均值,计算每个tag下的商品的平均价格

GET /ecommerce/product/_search
{
"size": 0,
"aggs" : {
"group_by_tags" : {
"terms" : { "field" : "tags" },
"aggs" : {
"avg_price" : {
"avg" : { "field" : "price" }
}
}
}
}
}

4、第四个数据分析需求

计算每个tag下的商品的平均价格,并且按照平均价格降序排序

GET /ecommerce/product/_search
{
"size": 0,
"aggs" : {
"all_tags" : {
"terms" : { "field" : "tags", "order": { "avg_price": "desc" } },
"aggs" : {
"avg_price" : {
"avg" : { "field" : "price" }
}
}
}
}
}

5、第五个数据分析需求

按照指定的价格范围区间进行分组,然后在每组内再按照tag进行分组,最后再计算每组的平均价格

GET /ecommerce/product/_search
{
"size": 0,
"aggs": {
"group_by_price": {
"range": {
"field": "price",
"ranges": [
{
"from": 0,
"to": 20
},
{
"from": 20,
"to": 40
},
{
"from": 40,
"to": 50
}
]
},
"aggs": {
"group_by_tags": {
"terms": {
"field": "tags"
},
"aggs": {
"average_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
}
}