上一篇博文中说到Prometheus有四种指标类型:Counter(计数器)、Gauge(仪表盘)、Histogram(直方图)、Summary(摘要),并且我们做了一个Counter的Demo,接下来看看Histogram。 Histogram:直方图 直方图,维基百科的定义:是一种对数据分布情况的图形表示,是一种二维统计图表,它的两个坐标分别是统计样本和该样本对应的某个属性的度量,以长条图(bar)的形式具体表现。因为直方图的长度及宽度很适合用来表现数量上的变化,所以较容易解读差异小的数值。还是拿上一篇的Sample来说明,假如每个订单都有一个金额,在order时在返回值{result=true,data=1000}的data属性中返回,这里,我们就可以用直方图来收集这个金额,由于订单的金额不一样,我们就可以用直方图来展示一定范围金额内订单的数据,监控出一定金额范围内的订单比例了。就是说在一定数量的订单里,少于1000元的有多少个订单,少于2000元有多少个订单,少于3000元的有多少个订单…… 首先,我们得修改BusinessController中Order Action的业务逻辑,把订单金额作为返回值:

[HttpGet("/order")]
public IActionResult Order(string orderno)
{
    try
    {
        _logger.LogInformation("下单");
        //返回订单金额             
        var random = new Random();
        return new JsonResult(new { Result = true, data = random.Next(1, 8000) });
    }
    catch (Exception exc)
    {
        _logger.LogCritical(exc, exc.Message);
        return new JsonResult(new { Result = false, Message = exc.Message });
    }
}

这里的金额为了方便demo,是随机生成一个1到8000的随机数。 需要在MetricsHub.cs中添加Histogram类型的指标收集集合:

using Prometheus;
using System.Collections.Generic;
namespace PrometheusSample.Middlewares
{ 
    public class MetricsHub 
    { 
        private static Dictionary<string, Counter> _counterDictionary = new Dictionary<string, Counter>(); 
        private static Dictionary<string, Dictionary<string, Gauge>> _gaugeDictionary = new Dictionary<string, Dictionary<string, Gauge>>(); 
        private static Dictionary<string, Histogram> _histogramDictionary = new Dictionary<string, Histogram>(); 
        public Counter GetCounter(string key)
        {
            if (_counterDictionary.ContainsKey(key))
            {
                return _counterDictionary[key];
            }
            else { 
                return null;
            }
        }
        public Dictionary<string, Gauge> GetGauge(string key) 
        { 
            if (_gaugeDictionary.ContainsKey(key))
            {
                return _gaugeDictionary[key]; 
            } 
            else
            { 
                return null; 
            } 
        } 
        public Histogram GetHistogram(string key) 
        {
            if (_histogramDictionary.ContainsKey(key))
            {
                return _histogramDictionary[key];
            }
            else
            { 
                return null; 
            } 
        } 
        public void AddCounter(string key, Counter counter)
        { 
            _counterDictionary.Add(key, counter);
        } 
        public void AddGauge(string key, Dictionary<string, Gauge> gauges) 
        {
            _gaugeDictionary.Add(key, gauges);
        } 
        public void AddHistogram(string key, Histogram histogram)
        { 
            _histogramDictionary.Add(key, histogram); 
        } 
    }
}

接下来就要在BusinessMetricsMiddleware的中间件中添加处理Histogram指标的代码了:

using Microsoft.AspNetCore.Http;
using PrometheusSample.Models;
using System.IO;
using System.Threading.Tasks;
namespace PrometheusSample.Middlewares
{
    /// <summary>   
    ///  请求记录中间件   
    ///  </summary>  
    public class BusinessMetricsMiddleware
    {
        private readonly RequestDelegate _next;
        public BusinessMetricsMiddleware(RequestDelegate next) { _next = next; }
        public async Task InvokeAsync(HttpContext context, MetricsHub metricsHub)
        {
            var originalBody = context.Response.Body;
            try
            {
                using (var memStream = new MemoryStream())
                {
                    //从管理返回的Response中取出返回数据,根据返回值进行监控指标计数      
                    context.Response.Body = memStream;
                    await _next(context); memStream.Position = 0; string responseBody = new StreamReader(memStream).ReadToEnd(); memStream.Position = 0; await memStream.CopyToAsync(originalBody); if (metricsHub.GetCounter(context.Request.Path) != null || metricsHub.GetGauge(context.Request.Path) != null)
                    {
                        //这里约定所有action返回值是一个APIResult类型   
                        var result = System.Text.Json.JsonSerializer.Deserialize<APIResult>(responseBody, new System.Text.Json.JsonSerializerOptions { PropertyNameCaseInsensitive = true }); if (result != null && result.Result)
                        {
                            //获取到Counter                         
                            var counter = metricsHub.GetCounter(context.Request.Path); if (counter != null)
                            {
                                //计数                 
                                counter.Inc();
                            }
                            var gauges = metricsHub.GetGauge(context.Request.Path); if (gauges != null)
                            {
                                //存在增加指标+就Inc 
                                if (gauges.ContainsKey("+"))
                                {
                                    gauges["+"].Inc();
                                }
                                //存在减少指标-就Dec              
                                if (gauges.ContainsKey("-")) { gauges["-"].Dec(); }
                            }
                            var histogram = metricsHub.GetHistogram(context.Request.Path); if (histogram != null)
                            {
                                var parseResult = int.TryParse(result.Data.ToString(), out int i);
                                if (parseResult)
                                {
                                    histogram.Observe(i);
                                }
                            }
                        }

                    }
                }
            }
            finally
            {
                context.Response.Body = originalBody;
            }
        }
    }
}

再就是在Starsup中配置对应url的Histogram参数了:

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.OpenApi.Models;
using Prometheus;
using PrometheusSample.Middlewares;
using PrometheusSample.Services;
using System.Collections.Generic;
namespace PrometheusSample
{
    public class Startup
    {
        public Startup(IConfiguration configuration)
        { Configuration = configuration; }
        public IConfiguration Configuration { get; }
        public void ConfigureServices(IServiceCollection services)
        {
            MetricsHandle(services); services.AddScoped<IOrderService, OrderService>();
            services.AddControllers();
            services.AddSwaggerGen(c =>
            {
                c.SwaggerDoc("v1", new OpenApiInfo { Title = "PrometheusSample", Version = "v1" });
            });
        }
        public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
        {
            if (env.IsDevelopment())
            {
                app.UseDeveloperExceptionPage();
                app.UseSwagger(); app.UseSwaggerUI(c => c.SwaggerEndpoint("/swagger/v1/swagger.json", "PrometheusSample v1"));
            }
            app.UseRouting();
            //http请求的中间件        
            app.UseHttpMetrics();
            app.UseAuthorization();
            //自定义业务跟踪       
            app.UseBusinessMetrics();
            app.UseEndpoints(endpoints =>
            {
                //映射监控地址为  /metrics      
                endpoints.MapMetrics();
                endpoints.MapControllers();
            });
        }
        /// <summary>   
        /// 处理监控事项  
        /// </summary> 
        /// <param name="services"></param>  
        void MetricsHandle(IServiceCollection services)
        {
            var metricsHub = new MetricsHub();
            //counter         
            metricsHub.AddCounter("/register", Metrics.CreateCounter("business_register_user", "注册用户数。"));
            metricsHub.AddCounter("/order", Metrics.CreateCounter("business_order_total", "下单总数。"));
            metricsHub.AddCounter("/pay", Metrics.CreateCounter("business_pay_total", "支付总数。"));
            metricsHub.AddCounter("/ship", Metrics.CreateCounter("business_ship_total", "发货总数。"));
            //gauge        
            var orderGauge = Metrics.CreateGauge("business_order_count", "当前下单数量。");
            var payGauge = Metrics.CreateGauge("business_pay_count", "当前支付数量。");
            var shipGauge = Metrics.CreateGauge("business_ship_count", "当前发货数据。");
            metricsHub.AddGauge("/order", new Dictionary<string, Gauge>
            {
                { "+", orderGauge}
            });
            metricsHub.AddGauge("/pay", new Dictionary<string, Gauge>
            {
                {"-",orderGauge},
                {"+",payGauge}
            });
            metricsHub.AddGauge("/ship", new Dictionary<string, Gauge>
            { { "+", shipGauge },
                { "-", payGauge } });
            //histogram                   
            var orderHistogram = Metrics.CreateHistogram("business_order_histogram", "订单直方图。",
                new HistogramConfiguration
                {
                    Buckets = Histogram.LinearBuckets(start: 1000, width: 1000, count: 5)
                }); metricsHub.AddHistogram("/order", orderHistogram);
            services.AddSingleton(metricsHub);
        }
    }
}

Histogram.LinearBuckets(start: 1000, width: 1000, count: 5)是金额从1000开始,每1000为一个台阶,一共6个台阶:0~1000,1001~2000,2001~3000,3001~4000,4001~5000,还有一个是大于5000的。 最后一步,就是打开Grafana来配置展示图表了。 订单金额分布图 订单比例分布图 图中histogram_quantile(0.80, sum(rate(business_order_histogram_bucket[5m])) by (le))的意思是“80%的订单金额小于等于这个值”5分钟内的值。 最终展示结果: 聪明的你一定发现,这篇博文与上一篇如出一辙,是的,只是监控指标展示类型不同而以。