1 模型

两种模型:

  • LLM
  • 聊天模型

然后,介绍咋用:

  • 提示模板格式化这些模型的输入
  • 输出解析器来处理输出

LangChain 中的语言模型有两种类型:

1.1 Chat Models

聊天模型通常由 LLM 支持,但专门针对会话进行调整。提供者 API 使用与纯文本补全模型不同的接口。它们的输入不是单个字符串,而是聊天信息列表,输出则是一条人工智能信息。

GPT-4 和 Anthropic 的 Claude-2 都是作为聊天模型实现。

1.2 LLM

LangChain 中的 LLM 指的是纯文本补全模型。它们封装的 API 将字符串提示作为输入,并输出字符串完成。OpenAI 的 GPT-3 就是作为 LLM 实现。

这两种 API 类型具有不同的输入和输出模式,并非所有模型都一样。不同模型有不同的最佳提示策略,如:

  • Anthropic 模型最适合用 XML
  • OpenAI 模型最适合用 JSON

设计应用程序时牢记这点。示例将使用聊天模型,并提供几种选择:使用 Anthropic 或 OpenAI 等 API,或通过 Ollama 使用本地开源模型。

2 实例

OpenAI与ChatOpenAI

#调用chatmodels,以openai为例

from langchain.chat_models import ChatOpenAI
from langchain.schema.messages import HumanMessage,AIMessage
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")

chat = ChatOpenAI(
    model="gpt-3.5-turbo",
    temperature=0,
    openai_api_key = api_key,
    openai_api_base = api_base

)

messages = [
    AIMessage(role="system",content="你好,我是JavaEdge!"),
    HumanMessage(role="user",content="你好JavaEdge,我是狗剩!"),
    AIMessage(role="system",content="认识你很高兴!"),
    HumanMessage(role="user",content="你知道我叫什么吗?")
]

response = chat.invoke(messages)
print(response)

#print(chat.predict("你好"))

3 流式调用

3.1 为啥要流式输出?

大模型都是一个个字打出来,免得让你觉得他每次神经网络计算太慢了,让你感觉他一直在持续输出。

# LLM类大模型的流式输出方法

from langchain.llms import OpenAI
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")

# 构造一个llm
llm = OpenAI(
    model = "gpt-3.5-turbo-instruct",
    temperature=0,
    openai_api_key = api_key,
    openai_api_base = api_base,
    max_tokens=512,
)

for chunk in llm.stream("写一首关于秋天的诗歌"):
    print(chunk,end="",flush=False)

所以,token 就很重要。

4 追踪Token的使用

# LLM的toekn追踪
from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback
import os
api_base = os.getenv("OPENAI_PROXY")
api_key = os.getenv("OPENAI_API_KEY")

# 构造一个llm
llm = OpenAI(
    model = "gpt-3.5-turbo-instruct",
    temperature=0,
    openai_api_key = api_key,
    openai_api_base = api_base,
    max_tokens=512,
)

with get_openai_callback() as cb:
    result = llm.invoke("给我讲一个笑话")
    print(result)
    print(cb)
# chatmodels的token追踪
 from langchain.chat_models import ChatOpenAI
 from langchain.callbacks import get_openai_callback
 import os
 api_base = os.getenv("OPENAI_PROXY")
 api_key = os.getenv("OPENAI_API_KEY")
 
 llm = ChatOpenAI(
     model = "gpt-4",
     temperature=0,
     openai_api_key = api_key,
     openai_api_base = api_base,
     max_tokens=512,
 )
 
 with get_openai_callback() as cb:
     result = llm.invoke("给我讲一个笑话")
     print(result)
     print(cb)

5 自定义输出

  • 输出函数参数
  • 输出json
  • 输出List
  • 输出日期

讲笑话机器人:希望每次根据指令,可以输出一个这样的笑话(小明是怎么死的?笨死的)

from langchain.llms import  OpenAI
 from langchain.output_parsers import PydanticOutputParser
 from langchain.prompts import PromptTemplate
 from langchain.pydantic_v1 import BaseModel,Field,validator
 from typing import  List
 import os
 api_base = os.getenv("OPENAI_PROXY")
 api_key = os.getenv("OPENAI_API_KEY")
 
 # 构造LLM
 model = OpenAI(
     model = "gpt-3.5-turbo-instruct",
     temperature=0,
     openai_api_key = api_key,
     openai_api_base = api_base,
 )
 
 #定义个数据模型,用来描述最终的实例结构
 class Joke(BaseModel):
     setup:str = Field(description="设置笑话的问题")
     # 笑点
     punchline:str = Field(description="回答笑话的答案")
 
     #验证问题是否符合要求
     @validator("setup")
     def question_mark(cls,field):
         if field[-1] != "?":
             raise ValueError("不符合预期的问题格式!")
         return field
 
 # 将Joke数据模型传入
 parser = PydanticOutputParser(pydantic_object=Joke)
 
 
 prompt = PromptTemplate(
     template = "回答用户的输入.\n{format_instructions}\n{query}\n",
     input_variables = ["query"],
     partial_variables = {"format_instructions":parser.get_format_instructions()}
 )
 
 prompt_and_model = prompt | model
 out_put = prompt_and_model.invoke({"query":"给我讲一个笑话"})
 print("out_put:",out_put)
 parser.invoke(out_put)

LLM的输出格式化成python list形式,类似['a','b','c']

from langchain.output_parsers import  CommaSeparatedListOutputParser
 from langchain.prompts import  PromptTemplate
 from langchain.llms import OpenAI
 import os
 api_base = os.getenv("OPENAI_PROXY")
 api_key = os.getenv("OPENAI_API_KEY")
 
 # 构造LLM
 model = OpenAI(
     model = "gpt-3.5-turbo-instruct",
     temperature=0,
     openai_api_key = api_key,
     openai_api_base = api_base,
 )
 
 parser = CommaSeparatedListOutputParser()
 
 prompt = PromptTemplate(
     template = "列出5个{subject}.\n{format_instructions}",
     input_variables = ["subject"],
     partial_variables = {"format_instructions":parser.get_format_instructions()}
 )
 
 _input = prompt.format(subject="常见的小狗的名字")
 output = model(_input)
 print(output)
 # 格式化
 parser.parse(output)