ABI即“application binary interface”,即编译器将c代码编译成汇编代码时使用的一种规则

使用规范如下:

在编译带有浮点参数的函数时,有三种可能的编译选项:
 -mfloat-abi=soft
 -mfloat-abi=softfp
 -mfloat-abi=hard (hardfp)

"soft"选项:表明不使用FPU硬件,而是使用GCC的整数算术运算来模拟浮点运算。

"softfp"选项:表明要使用FPU硬件来做浮点运算,只是,函数的参数传递到整数寄存器(r0-r3)中,然后再传递到FPU中。

"hard"选项:表明要使用FPU硬件来做浮点运算,并且,函数的参数直接传递到FPU的寄存器(s0、d0)中。


hardfp ABI和hardfloat运算不是一回事:

hardfp ABI也称为VFP模式的ABI;只是一种编译规则;而hardfloat运算则表示用FPU来做浮点运算。

soft ABI和softfp ABI这两者统称为标准模式ABI。


因此,在涉及到浮点函数调用时,

用-mfloat-abi=soft编译的app或者库,在用-mfloat-abi=softfp编译的OS中是可以跑的;

用-mfloat-abi=softfp编译的app或者库,在用-mfloat-abi=soft编译的OS中,如果SoC中没有FPU,那么是不能跑的。

而-mfloat-abi=softfp/soft与-mfloat-abi=hard,是互不兼容的。

 

 

-mfpu=name
-mfpe=number
-mfp=number

This specifies what floating point hardware (or hardware emulation) is available on the target. Permissible names are: fpa, fpe2, fpe3, maverick, vfp. -mfp and -mfpe are synonyms for -mfpu=fpenumber, for compatibility with older versions of GCC.

  

 

-mfloat-abi=name
Specifies which ABI to use for floating point values. Permissible values are: soft, softfp and hard.

soft and hard are equivalent to -msoft-float and -mhard-float respectively. softfp allows the generation of floating point instructions, but still uses the soft-float calling conventions.

 

 

******************************************************************************************************浮点

    ARM 浮点体系结构 (VFP) 为半精度、单精度和双精度浮点运算中的浮点操作提供硬件支持。它完全符合 IEEE 754 标准,并提供完全软件库支持。

VFP 体系结构版本

    在 ARMv7 体系结构之前,VFP 代表矢量浮点体系结构,并曾用于矢量运算。

    对于许多应用来说,设置硬件浮点至关重要,并且硬件浮点可用作使用高级设计工具(如 MatLab、MATRIXx 和 LabVIEW)直接对系统建模和派生应用程序代码的片上系统 (SoC) 设计流程的一部分。在与 NEON 多媒体处理功能结合使用时,硬件浮点可用于增强图像应用程序的性能(如缩放、2D 和 3D 转换、字体生成和数字过滤)。

迄今为止,VFP 主要有三个版本:

  • VFPv1 已废弃。要获取详细信息,可向 ARM 发送相关请求。

  • VFPv2 是对 ARMv5TE、ARMv5TEJ 和 ARMv6 体系结构中 ARM 指令集的可选扩展。

  • VFPv3 是对 ARMv7-A 和 ARMv7-R 配置文件中 ARM、Thumb® 和 ThumbEE 指令集的可选扩展。可使用 32 个或 16 个双字长寄存器实现 VFPv3。术语 VFPv3-D32 和 VFPv3-D16 用于区别这两个实现选项。可通过半精度扩展对 VFPv3 进行扩展,这些扩展可在半精度浮点和单精度浮点之间提供双向转换功能。

 ///////////////////////////////////////

一:早期ARM上的浮点模拟器:

早期的ARM没有协处理器,所以浮点运算是由CPU来模拟的,即所需浮点运算均在浮点运算模拟器(float math emulation)上进行,需要的浮点运算,常要耗费数千个循环才能执行完毕,因此特别缓慢。

直到今天,在ARM Kernel配置时,都有如下选项:

Floating point emulation --->

[ ] NWFPE math emulation

[ ] FastFPE math emulation (EXPERIMENTAL)

在这里,可以配置ARM 浮点模拟器。

 

浮点模拟器 模拟浮点是利用了undefined instrction handler,在运算过程中遇到浮点计算是产生异常中断,这么做带来的后果是带来极频繁的exception,大大增加中断延迟,降低系统实时性。

 

二:软浮点技术:

软浮点支持是由交叉工具链提供的功能,与Linux内核无关。当使用软浮点工具链编译浮点操作时,编译器会用内联的浮点库替换掉浮点操作,使得生成的机器码完全不含浮点指令,但是又能够完成正确的浮点操作。

 

三:浮点协处理器:

在较新版本的ARM中,可以添加协处理器。 一些ARM CPU为了更好的处理浮点计算的需要,添加了浮点协处理器。

并定义了浮点指令集。 如果不存在实际的硬件,则这些指令被截获并由浮点模拟器模块(FPEmulator)来执行。

 

 

四: 硬件浮点协处理器以及对应指令集的使用:

想要使用硬件浮点协处理器来帮助运算Application中的浮点运算。需要以下几个前提条件:

1. Kernel中设置支持硬件协处理器。

2. 编译器支持将浮点运算翻译成硬件浮点运算指令,或者在需要浮点运算的时候手动调用相应的浮点运算指令。

 

1. Kernle的支持:

如果Kernel不支持浮点协处理器,则因为协处理器寄存器等使用权限等问题,协处理器对应指令无法运行。 

Floating point emulation --->
[*] VFP-format floating point maths

Include VFP support code in the kernel. This is needed IF your hardware includes a VFP unit.

 

2. 编译器指定浮点指令:

编译器可以显式指定将浮点运算翻译成何种浮点指令。

 

如果编译器支持软浮点,则其可能会将浮点运算翻译成编译器中自带的浮点库。则不会有真正的浮点运算。

否则,可以翻译成FPA(Floating Point Accelerator)指令。 FPA指令再去查看是否有浮点模拟器。

还可以将浮点运算指定为VFP(vector floating point)指令或者neon向量浮点指令。

 

 

五. 编译器指定编译硬浮点指令:

测试浮点加减乘除等运算的时间长度:

 

float src_mem_32[1024] = {1.024};


float dst_mem_32[1024] = {0.933};

 

for(j = 0; j < 1024; j++)
{
for(i = 0; i < 1024; i++)
{
src_32 = src_mem_32[i] + dst_mem_32[i];
}
}

通过printf 计算前后毫秒数的差值来看计算能力。

 

编译:

arm-hisiv200-linux-gcc -c -Wall fcpu.c -o fcpu.o

arm-hisiv200-linux-gcc fcpu.o -o FCPU -L./

运行,则得到32位浮点数加1024次所需要时间。

 

如果要使用VFP呢?

arm-hisiv200-linux-gcc -c -Wall -mfpu=vfp -mfloat-abi=softfp fcpu.c -o fcpu.o

arm-hisiv200-linux-gcc -Wall -mfpu=vfp -mfloat-abi=softfp fcpu.o -o FCPU -L./

则运行后发现,所需要时间几乎减小了一半。 说明还是非常有效果的。

关于-mfpu -mfloat-abi讲解:见附录2。

 

另外,如何才能在直观的检查出是否使用VFP呢?

可以通过察看编译出的ASM程序得到结论。

 

#arm-hisiv200-linux-objdump -d fcpu.o

00000000 <test_F32bit_addition>:
0: e52db004 push {fp} ; (str fp, [sp, #-4]!)
4: e28db000 add fp, sp, #0
8: e24dd00c sub sp, sp, #12
c: e3a03000 mov r3, #0
10: e50b300c str r3, [fp, #-12]
14: e3a03000 mov r3, #0
18: e50b3008 str r3, [fp, #-8]
1c: e3a03000 mov r3, #0
20: e50b3008 str r3, [fp, #-8]
24: ea000017 b 88 <test_F32bit_addition+0x88>
28: e3a03000 mov r3, #0
2c: e50b300c str r3, [fp, #-12]
30: ea00000d b 6c <test_F32bit_addition+0x6c>
34: e51b200c ldr r2, [fp, #-12]
38: e59f3064 ldr r3, [pc, #100] ; a4 <test_F32bit_addition+0xa4>
3c: e0831102 add r1, r3, r2, lsl #2
40: ed917a00 vldr s14, [r1]
44: e51b200c ldr r2, [fp, #-12]
48: e59f3058 ldr r3, [pc, #88] ; a8 <test_F32bit_addition+0xa8>
4c: e0831102 add r1, r3, r2, lsl #2
50: edd17a00 vldr s15, [r1]
54: ee777a27 vadd.f32 s15, s14, s15
58: e59f304c ldr r3, [pc, #76] ; ac <test_F32bit_addition+0xac>
5c: edc37a00 vstr s15, [r3]
60: e51b300c ldr r3, [fp, #-12]
64: e2833001 add r3, r3, #1
68: e50b300c str r3, [fp, #-12]
6c: e51b200c ldr r2, [fp, #-12]
70: e59f3038 ldr r3, [pc, #56] ; b0 <test_F32bit_addition+0xb0>
74: e1520003 cmp r2, r3
78: daffffed ble 34 <test_F32bit_addition+0x34>
7c: e51b3008 ldr r3, [fp, #-8]
80: e2833001 add r3, r3, #1
84: e50b3008 str r3, [fp, #-8]
88: e51b2008 ldr r2, [fp, #-8]
8c: e59f301c ldr r3, [pc, #28] ; b0 <test_F32bit_addition+0xb0>
90: e1520003 cmp r2, r3
94: daffffe3 ble 28 <test_F32bit_addition+0x28>
98: e28bd000 add sp, fp, #0
9c: e49db004 pop {fp} ; (ldr fp, [sp], #4)
a0: e12fff1e bx lr

 

这里明显包含vfp指令。 所以是使用vfp指令的:

arm-hisiv200-linux-gcc -c -Wall -mfpu=vfp -mfloat-abi=softfp fcpu.c -o fcpu.o

注意:VFP 指令指令在附录1中。

 

 

如果使用:

arm-hisiv200-linux-gcc -c -Wall fcpu.c -o fcpu.o

 

#arm-hisiv200-linux-objdump -d fcpu.o

00000000 <test_F32bit_addition>:
0: e92d4800 push {fp, lr}
4: e28db004 add fp, sp, #4
8: e24dd008 sub sp, sp, #8
c: e3a03000 mov r3, #0
10: e50b300c str r3, [fp, #-12]
14: e3a03000 mov r3, #0
18: e50b3008 str r3, [fp, #-8]
1c: e3a03000 mov r3, #0
20: e50b3008 str r3, [fp, #-8]
24: ea000019 b 90 <test_F32bit_addition+0x90>
28: e3a03000 mov r3, #0
2c: e50b300c str r3, [fp, #-12]
30: ea00000f b 74 <test_F32bit_addition+0x74>
34: e51b200c ldr r2, [fp, #-12]
38: e59f3068 ldr r3, [pc, #104] ; a8 <test_F32bit_addition+0xa8>
3c: e7932102 ldr r2, [r3, r2, lsl #2]
40: e51b100c ldr r1, [fp, #-12]
44: e59f3060 ldr r3, [pc, #96] ; ac <test_F32bit_addition+0xac>
48: e7933101 ldr r3, [r3, r1, lsl #2]
4c: e1a00002 mov r0, r2
50: e1a01003 mov r1, r3
54: ebfffffe bl 0 <__aeabi_fadd>
58: e1a03000 mov r3, r0
5c: e1a02003 mov r2, r3
60: e59f3048 ldr r3, [pc, #72] ; b0 <test_F32bit_addition+0xb0>
64: e5832000 str r2, [r3]
68: e51b300c ldr r3, [fp, #-12]
6c: e2833001 add r3, r3, #1
70: e50b300c str r3, [fp, #-12]
74: e51b200c ldr r2, [fp, #-12]
78: e59f3034 ldr r3, [pc, #52] ; b4 <test_F32bit_addition+0xb4>
7c: e1520003 cmp r2, r3
80: daffffeb ble 34 <test_F32bit_addition+0x34>
84: e51b3008 ldr r3, [fp, #-8]
88: e2833001 add r3, r3, #1
8c: e50b3008 str r3, [fp, #-8]
90: e51b2008 ldr r2, [fp, #-8]
94: e59f3018 ldr r3, [pc, #24] ; b4 <test_F32bit_addition+0xb4>
98: e1520003 cmp r2, r3
9c: daffffe1 ble 28 <test_F32bit_addition+0x28>
a0: e24bd004 sub sp, fp, #4
a4: e8bd8800 pop {fp, pc}

则不包含VFP指令。

且去调用 __aeabi_fadd