前段时间一个项目需要用到1/24s的高精度定时器,每秒的误差不能超过10ms,大约41.666666666毫秒的延时,普通Sleep肯定是没办法满足的了,可以用以下新的三种方法:

/*
	// 1秒=1000毫秒(ms)
	// 1毫秒=1/1000秒(s)
	// 1秒=1000000 微秒(μs)
	// 1微秒=1/1000000秒(s)
	// 1秒=1000000000 纳秒(ns)
	// 1纳秒=1/1000000000秒(s)
	// lTime----休眠时间(微秒)
*/

1、利用CreateWaitableTimer实现纳秒级延时

/*
纳秒休眠,符号ns(英语:nanosecond ).
1纳秒等于十亿分之一秒(10-9秒)
1 纳秒 = 1000皮秒 
1,000 纳秒 = 1微秒 	  
1,000,000 纳秒 = 1毫秒 		
1,000,000,000 纳秒 = 1秒 
*/
int NSSleep()
{
	HANDLE hTimer = NULL;
    LARGE_INTEGER liDueTime;
	
    liDueTime.QuadPart = -390000;
	
    // Create a waitable timer.
    hTimer = CreateWaitableTimer(NULL, TRUE, "WaitableTimer");
    if (!hTimer)
    {
        printf("CreateWaitableTimer failed (%d)\n", GetLastError());
        return 1;
    }

    // Set a timer to wait for 10 seconds.
    if (!SetWaitableTimer(
        hTimer, &liDueTime, 0, NULL, NULL, 0))
    {
        printf("SetWaitableTimer failed (%d)\n", GetLastError());
        return 2;
    }
	
    // Wait for the timer.
    if (WaitForSingleObject(hTimer, INFINITE) != WAIT_OBJECT_0)
        printf("WaitForSingleObject failed (%d)\n", GetLastError());

    return 0;
}

2、利用QueryPerformanceFrequency与QueryPerformanceCounter实现毫秒级延时

// 休眠指定毫秒数
void MSleep(long lTime)
{
	LARGE_INTEGER litmp; 
	LONGLONG QPart1,QPart2;
	double dfMinus, dfFreq, dfTim, dfSpec; 
	QueryPerformanceFrequency(&litmp);
	dfFreq = (double)litmp.QuadPart;
	QueryPerformanceCounter(&litmp);
	QPart1 = litmp.QuadPart;
	dfSpec = 0.000001*lTime;
		
	do
	{
		QueryPerformanceCounter(&litmp);
		QPart2 = litmp.QuadPart;
		dfMinus = (double)(QPart2-QPart1);
		dfTim = dfMinus / dfFreq;
	}while(dfTim<dfSpec);
}

3、利用timeSetEvent实现1ms定时器

#include <mmsystem.h>
#pragma comment(lib,"winmm.lib")


//定义1ms和2s时钟间隔,以ms为单位
#define ONE_MILLI_SECOND	1

//定义时钟分辨率,以ms为单位
#define TIMER_ACCURACY		1

volatile DWORD	g_nCounter = 0;
volatile DWORD	g_nCnt = 0;
DWORD			g_nTicket = 0;
LARGE_INTEGER	g_xliPerfFreq = {0};
LARGE_INTEGER	g_xliPerfStart={0};  
LARGE_INTEGER	g_xliPerfNow={0};
int				g_nSecond = 0;

MMRESULT		g_mmTimerId = 0;
UINT			g_wAccuracy = 0;

// 自己去实现一个PING函数, 网上大把就不发了
int StartPing()
{
	return 1;
}

void CALLBACK TimerProc(UINT nID, UINT uMsg, DWORD dwUser, DWORD dw1, DWORD d2)
{
	double		dtime = 0.0f;
	char		szBuffer[MAX_PATH] = {0x00}; 
	DWORD		nTemp = 0;

	if(nID == g_mmTimerId)
	{
		g_nCounter++;
		g_nSecond += StartPing();
		if(g_nCounter == 24)
		{
		
			QueryPerformanceCounter(&g_xliPerfNow);  
			dtime = ((double)(g_xliPerfNow.QuadPart - g_xliPerfStart.QuadPart) * 1000000.0f) / (double)g_xliPerfFreq.QuadPart; 
			
			if(dtime < 1000000.0f)
			{
				MSleep((1000000.0f - dtime));
			}

			QueryPerformanceCounter(&g_xliPerfNow);  
			dtime = ((double)(g_xliPerfNow.QuadPart - g_xliPerfStart.QuadPart) * 1000000.0f) / (double)g_xliPerfFreq.QuadPart; 
			
			nTemp = GetTickCount() - g_nTicket;			
			sprintf(szBuffer," [%04d] 执行时间 %d 毫秒,  \t%.9f 微秒,  \t延时: %d ms", g_nCnt, nTemp, dtime, g_nSecond);  
			cout<<szBuffer<<endl;
			
			g_nTicket = GetTickCount();
			memset(&g_xliPerfNow, 0x00, sizeof(LARGE_INTEGER));
			memset(&g_xliPerfStart, 0x00, sizeof(LARGE_INTEGER));
			memset(&g_xliPerfNow, 0x00, sizeof(LARGE_INTEGER));

			QueryPerformanceFrequency(&g_xliPerfFreq);   
			QueryPerformanceCounter(&g_xliPerfStart); 

			g_nCnt++;
			g_nCounter = 0;
			g_nSecond = 0;
		}
	}
}

// 释放定时器
void FreeHighTimer()
{
	if(g_mmTimerId == 0)
		return;
	
	timeKillEvent(g_mmTimerId);
	timeEndPeriod(g_wAccuracy); 
}

// 初始化高精度定时器
BOOL InitHighTimer()
{
	TIMECAPS	tc;

	QueryPerformanceFrequency(&g_xliPerfFreq);   
	QueryPerformanceCounter(&g_xliPerfStart); 
	g_nTicket = GetTickCount();
	
	//利用函数timeGetDeVCaps取出系统分辨率的取值范围,如果无错则继续; 
	if(timeGetDevCaps(&tc,sizeof(TIMECAPS)) == TIMERR_NOERROR) 
	{
		//分辨率的值不能超出系统的取值范围
		g_wAccuracy = min(max(tc.wPeriodMin, TIMER_ACCURACY), tc.wPeriodMax); 
		
		//调用timeBeginPeriod函数设置定时器的分辨率 
		timeBeginPeriod(g_wAccuracy);
		
		// 设定41毫秒定时器
		g_mmTimerId = timeSetEvent(41,0,TimerProc,NULL,TIME_PERIODIC);
		if(g_mmTimerId == 0)
		{
			cout << "timeSetEvent failed: %d" << GetLastError() << endl;
			return FALSE;
		}
		
		return TRUE;
	}
	
	return FALSE;
}

每一秒耗时都是相对准确的,运行效果如下:

Windows实现高精度定时器的三种方法_Timer 前面为GetTicket取出的毫秒,后面为每执行24次一个周期所消耗的微妙,最后一个为ping

 

      本来是创建一个线程,再用方法1、2来休眠实现延时,但这种太低效率了而且不能保证误差,所以综上对比,强烈推荐第三种方法做高精度定时器!