一、文档
在实际使用中的对象往往拥有复杂的数据结构
Elasticsearch是面向文档的,这意味着他可以存储整个对象或文档,然而他不仅仅是存储,还会索引每个文档的内容使之可以被搜索,在Elasticsearch中可以对文档进行索引、搜索、排序、过滤。
Elasticsearch使用JSON作为文档序列化格式。
使用json表示一个用户对象:
{
"email": "john@smith.com",
"first_name": "John",
"last_name": "Smith",
"info": {
"bio": "Eco-warrior and defender of the weak",
"age": 25,
"interests": [ "dolphins", "whales" ]
},
"join_date": "2014/05/01"
}
经原始的user对象很复杂但他的结构和对象的含义已经被完整的体现在JSON中
简单的开始教程:建立员工搜索目录
二、索引
首先要做的是存储员工数据,每个文档代表一个员工,在ElasticSearch中存储数据的行为叫做索引,不过在索引之前,需要明确数据应该存储在哪里。
在elasticsearch中,文档归属于一种类型,而这些类型存在于索引中
elasticsearch与传统数据库的比较
Relational DB ->Databases ->Tables -> Rows ->Columns
Elasticsearch -> Indices ->Types -> Documents ->Fields
Elasticsearch集群可以包含多个索引(indices)(数据库),每一个索引可以包含多个类型(type),一个类型包含多个文档(documents)(行),然后每个文档包含多个字段(fields)(列)
默认情况下,文档中的所有字段都会被索引(拥有一个倒排索引),只有这样他们才是可被搜索的。
因此为了做上述的员工目录,我们将做如下操作:
为每个员工的文档(document)建立索引,每个文档包含了相应员工的所有信息
每个文档的类型为employee
employee类型归属于索引megacorp
megacorp索引存储在ElasticSearch集群中
PUT /megacorp/employee/1
{
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
我们看到path:/magecorp/employee/1包含三部分信息:
megacorp 索引名
employee 类型名
1 这个员工的ID
请求实体(JSON文档包含了这个员工的所有信息。
我们不需要用做额外的管理操作,比如创建索引或者定义每个字段的数据类型,我们能够直接索引文档,Elasticsearch已经内置所有的缺省设置,所有管理操作都是透明的。
按照统一的样式加入更多的员工信息、
三、检索
现在Elasticsearch中已经存储了一些数据。
①:检索单个员工的信息:执行HTTP GET请求并指出文档的“地址”--索引、类型和ID
GET /megacorp/employee/1 响应结果中包含一些文档的元信息
{
"_index" : "megacorp",
"_type" : "employee",
"_id" : "1",
"_version" : 1,
"found" : true,
"_source" : {
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
}
我们通过HTTP方法GET来检索翁当,同样,我们可以使用DELETE方法删除文档,使用HEAD方法检查某文档是否存在,如果想要更新已存在的文文档,我们只需再PUT一次。
②:搜索全部的员工
GET /megacorp/employee/_search 默认返回前10个结果:
{
"took": 6,
"timed_out": false,
"_shards": { ... },
"hits": {
"total": 3,
"max_score": 1,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "3",
"_score": 1,
"_source": {
"first_name": "Douglas",
"last_name": "Fir",
"age": 35,
"about": "I like to build cabinets",
"interests": [ "forestry" ]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 1,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 1,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
响应内容不仅会告诉我们哪些文档被匹配到,而且这些文档内容完整的被包含在其中
③:搜索姓氏中包含Smith的员工。我们要用到查询字符串(query string)搜索
GET /megacorp/employee/_search?q=last_name:Smith
请求中依旧使用_search关键字,然后将查询语句传递给参数q=
{
...
"hits": {
"total": 2,
"max_score": 0.30685282,
"hits": [
{
...
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
},
{
...
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
④:使用DSL语句查询
查询字符串搜索便于通过命令行完成特定的搜索,但是他也有局限性,Elasticsearch提供丰富且灵活的查询语言叫做DSL查询(Query DSL)它允许构建更加复杂、强大的查询、
DSL(Domain Specific Language特定领域语言)以JSON请求体的形式出现,例如将之前查询姓氏Smith的方法变为:
GET /megacorp/employee/_search
{
"query" : {
"match" : {
"last_name" : "Smith"
}
}
}
与之前结果一样,只是不再使用查询字符串作为参数,而是使用请求体代替,其中使用了match语句。
⑤:复杂的查询
修改上例为查询姓氏Smith并且年龄大于30岁的员工,我们的语句将添加过滤器。
GET /megacorp/employee/_search
{
"query" : {
"filtered" : {
"filter" : {
"range" : {
"age" : { "gt" : 30 } <1>
}
},
"query" : {
"match" : {
"last_name" : "smith" <2>
}
}
}
}
}
<1>这部分查询属于区间过滤器,他用于查找所有年龄大于30岁的数据
<2>这部分查询与之前的match语句一致
结果显示为:
{
...
"hits": {
"total": 1,
"max_score": 0.30685282,
"hits": [
{
...
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
⑥:全文搜索
以上的搜索都很简单:搜索特定的名字,通过年龄筛选。以下我们来看全文搜索。
比如我们搜索所有喜欢“rock climbing”的员工
GET /megacorp/employee/_search
{
"query" : {
"match" : {
"about" : "rock climbing"
}
}
}
使用了之前的match查询
结果为:
{
...
"hits": {
"total": 2,
"max_score": 0.16273327,
"hits": [
{
...
"_score": 0.16273327, <1>
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
},
{
...
"_score": 0.016878016, <2>
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
<1><2>为结果相关性评分
默认情况下,Elasticsearch根据结果相关性评分来对结果进行排序,所谓的结果相关性评分就是文档与查询条件的匹配程度
⑦:短语搜索
确切的匹配单词或短语只要将match变为match_phrase查询即可:
GET /megacorp/employee/_search
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
}
}
结果为:
{
...
"hits": {
"total": 1,
"max_score": 0.23013961,
"hits": [
{
...
"_score": 0.23013961,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
}
]
}
}
⑧:高亮我们的搜索
在之前的语句上增加highlight参数:
GET /megacorp/employee/_search
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
},
"highlight": {
"fields" : {
"about" : {}
}
}
}
结果为:并且用<em>标签来标识匹配的单词
{
...
"hits": {
"total": 1,
"max_score": 0.23013961,
"hits": [
{
...
"_score": 0.23013961,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
},
"highlight": {
"about": [
"I love to go <em>rock</em> <em>climbing</em>" <1>
]
}
}
]
}
}
<1>原有文本中高亮的片段
四、聚合
Elasticsearch有一个功能叫做聚合(aggregations)他允许在数据上生成复杂的分析统计,就像SQL中的GROUP BY,但是功能上更强大。
比如查看员工中最大的共同点是什么
GET /megacorp/employee/_search
{
"aggs": {
"all_interests": {
"terms": { "field": "interests" }
}
}
}
结果:
{
...
"hits": { ... },
"aggregations": {
"all_interests": {
"buckets": [
{
"key": "music",
"doc_count": 2
},
{
"key": "forestry",
"doc_count": 1
},
{
"key": "sports",
"doc_count": 1
}
]
}
}
}
我们可以看到结果中匹配的数据。
如果我们要增加条件,比如增加姓氏为Smith的最大兴趣爱好,只要加过滤就好:
GET /megacorp/employee/_search
{
"query": {
"match": {
"last_name": "smith"
}
},
"aggs": {
"all_interests": {
"terms": {
"field": "interests"
}
}
}
}
结果:
...
"all_interests": {
"buckets": [
{
"key": "music",
"doc_count": 2
},
{
"key": "sports",
"doc_count": 1
}
]
}
聚合页允许分级汇总,比如统计每种兴趣下职工的平均年龄:
GET /megacorp/employee/_search
{
"aggs" : {
"all_interests" : {
"terms" : { "field" : "interests" },
"aggs" : {
"avg_age" : {
"avg" : { "field" : "age" }
}
}
}
}
}
结果:
...
"all_interests": {
"buckets": [
{
"key": "music",
"doc_count": 2,
"avg_age": {
"value": 28.5
}
},
{
"key": "forestry",
"doc_count": 1,
"avg_age": {
"value": 35
}
},
{
"key": "sports",
"doc_count": 1,
"avg_age": {
"value": 25
}
}
]
}