一、文档

在实际使用中的对象往往拥有复杂的数据结构

Elasticsearch是面向文档的,这意味着他可以存储整个对象或文档,然而他不仅仅是存储,还会索引每个文档的内容使之可以被搜索,在Elasticsearch中可以对文档进行索引、搜索、排序、过滤。

Elasticsearch使用JSON作为文档序列化格式。

使用json表示一个用户对象:

{
    "email":      "john@smith.com",
    "first_name": "John",
    "last_name":  "Smith",
    "info": {
        "bio":         "Eco-warrior and defender of the weak",
        "age":         25,
        "interests": [ "dolphins", "whales" ]
    },
    "join_date": "2014/05/01"
}

经原始的user对象很复杂但他的结构和对象的含义已经被完整的体现在JSON中

 

简单的开始教程:建立员工搜索目录

二、索引

首先要做的是存储员工数据,每个文档代表一个员工,在ElasticSearch中存储数据的行为叫做索引,不过在索引之前,需要明确数据应该存储在哪里。

在elasticsearch中,文档归属于一种类型,而这些类型存在于索引中

elasticsearch与传统数据库的比较

Relational DB ->Databases ->Tables  -> Rows ->Columns

Elasticsearch  -> Indices    ->Types   -> Documents  ->Fields

Elasticsearch集群可以包含多个索引(indices)(数据库),每一个索引可以包含多个类型(type),一个类型包含多个文档(documents)(行),然后每个文档包含多个字段(fields)(列)

默认情况下,文档中的所有字段都会被索引(拥有一个倒排索引),只有这样他们才是可被搜索的。

因此为了做上述的员工目录,我们将做如下操作:

    为每个员工的文档(document)建立索引,每个文档包含了相应员工的所有信息

    每个文档的类型为employee

    employee类型归属于索引megacorp

    megacorp索引存储在ElasticSearch集群中

PUT /megacorp/employee/1
{
    "first_name" : "John",
    "last_name" :  "Smith",
    "age" :        25,
    "about" :      "I love to go rock climbing",
    "interests": [ "sports", "music" ]
}

我们看到path:/magecorp/employee/1包含三部分信息:

megacorp     索引名

employee      类型名

1                 这个员工的ID

请求实体(JSON文档包含了这个员工的所有信息。

我们不需要用做额外的管理操作,比如创建索引或者定义每个字段的数据类型,我们能够直接索引文档,Elasticsearch已经内置所有的缺省设置,所有管理操作都是透明的。

按照统一的样式加入更多的员工信息、

三、检索

现在Elasticsearch中已经存储了一些数据。

①:检索单个员工的信息:执行HTTP GET请求并指出文档的“地址”--索引、类型和ID

  GET   /megacorp/employee/1     响应结果中包含一些文档的元信息

{
  "_index" :   "megacorp",
  "_type" :    "employee",
  "_id" :      "1",
  "_version" : 1,
  "found" :    true,
  "_source" :  {
      "first_name" :  "John",
      "last_name" :   "Smith",
      "age" :         25,
      "about" :       "I love to go rock climbing",
      "interests":  [ "sports", "music" ]
  }
}

我们通过HTTP方法GET来检索翁当,同样,我们可以使用DELETE方法删除文档,使用HEAD方法检查某文档是否存在,如果想要更新已存在的文文档,我们只需再PUT一次。

②:搜索全部的员工

   GET  /megacorp/employee/_search    默认返回前10个结果:

{
   "took":      6,
   "timed_out": false,
   "_shards": { ... },
   "hits": {
      "total":      3,
      "max_score":  1,
      "hits": [
         {
            "_index":         "megacorp",
            "_type":          "employee",
            "_id":            "3",
            "_score":         1,
            "_source": {
               "first_name":  "Douglas",
               "last_name":   "Fir",
               "age":         35,
               "about":       "I like to build cabinets",
               "interests": [ "forestry" ]
            }
         },
         {
            "_index":         "megacorp",
            "_type":          "employee",
            "_id":            "1",
            "_score":         1,
            "_source": {
               "first_name":  "John",
               "last_name":   "Smith",
               "age":         25,
               "about":       "I love to go rock climbing",
               "interests": [ "sports", "music" ]
            }
         },
         {
            "_index":         "megacorp",
            "_type":          "employee",
            "_id":            "2",
            "_score":         1,
            "_source": {
               "first_name":  "Jane",
               "last_name":   "Smith",
               "age":         32,
               "about":       "I like to collect rock albums",
               "interests": [ "music" ]
            }
         }
      ]
   }
}

响应内容不仅会告诉我们哪些文档被匹配到,而且这些文档内容完整的被包含在其中

③:搜索姓氏中包含Smith的员工。我们要用到查询字符串(query string)搜索

 GET /megacorp/employee/_search?q=last_name:Smith    

请求中依旧使用_search关键字,然后将查询语句传递给参数q=  

{
   ...
   "hits": {
      "total":      2,
      "max_score":  0.30685282,
      "hits": [
         {
            ...
            "_source": {
               "first_name":  "John",
               "last_name":   "Smith",
               "age":         25,
               "about":       "I love to go rock climbing",
               "interests": [ "sports", "music" ]
            }
         },
         {
            ...
            "_source": {
               "first_name":  "Jane",
               "last_name":   "Smith",
               "age":         32,
               "about":       "I like to collect rock albums",
               "interests": [ "music" ]
            }
         }
      ]
   }
}

④:使用DSL语句查询

查询字符串搜索便于通过命令行完成特定的搜索,但是他也有局限性,Elasticsearch提供丰富且灵活的查询语言叫做DSL查询(Query DSL)它允许构建更加复杂、强大的查询、

DSL(Domain Specific Language特定领域语言)以JSON请求体的形式出现,例如将之前查询姓氏Smith的方法变为:

GET /megacorp/employee/_search
{
    "query" : {
        "match" : {
            "last_name" : "Smith"
        }
    }
}

与之前结果一样,只是不再使用查询字符串作为参数,而是使用请求体代替,其中使用了match语句。

⑤:复杂的查询

修改上例为查询姓氏Smith并且年龄大于30岁的员工,我们的语句将添加过滤器。

GET /megacorp/employee/_search
{
    "query" : {
        "filtered" : {
            "filter" : {
                "range" : {
                    "age" : { "gt" : 30 } <1>
                }
            },
            "query" : {
                "match" : {
                    "last_name" : "smith" <2>
                }
            }
        }
    }
}

<1>这部分查询属于区间过滤器,他用于查找所有年龄大于30岁的数据

<2>这部分查询与之前的match语句一致

结果显示为:

{
   ...
   "hits": {
      "total":      1,
      "max_score":  0.30685282,
      "hits": [
         {
            ...
            "_source": {
               "first_name":  "Jane",
               "last_name":   "Smith",
               "age":         32,
               "about":       "I like to collect rock albums",
               "interests": [ "music" ]
            }
         }
      ]
   }
}

⑥:全文搜索

以上的搜索都很简单:搜索特定的名字,通过年龄筛选。以下我们来看全文搜索。

比如我们搜索所有喜欢“rock climbing”的员工

GET /megacorp/employee/_search
{
    "query" : {
        "match" : {
            "about" : "rock climbing"
        }
    }
}

使用了之前的match查询

结果为:

{
   ...
   "hits": {
      "total":      2,
      "max_score":  0.16273327,
      "hits": [
         {
            ...
            "_score":         0.16273327, <1>
            "_source": {
               "first_name":  "John",
               "last_name":   "Smith",
               "age":         25,
               "about":       "I love to go rock climbing",
               "interests": [ "sports", "music" ]
            }
         },
         {
            ...
            "_score":         0.016878016, <2>
            "_source": {
               "first_name":  "Jane",
               "last_name":   "Smith",
               "age":         32,
               "about":       "I like to collect rock albums",
               "interests": [ "music" ]
            }
         }
      ]
   }
}

<1><2>为结果相关性评分

默认情况下,Elasticsearch根据结果相关性评分来对结果进行排序,所谓的结果相关性评分就是文档与查询条件的匹配程度

⑦:短语搜索

确切的匹配单词或短语只要将match变为match_phrase查询即可:

GET /megacorp/employee/_search
{
    "query" : {
        "match_phrase" : {
            "about" : "rock climbing"
        }
    }
}

结果为:

{
   ...
   "hits": {
      "total":      1,
      "max_score":  0.23013961,
      "hits": [
         {
            ...
            "_score":         0.23013961,
            "_source": {
               "first_name":  "John",
               "last_name":   "Smith",
               "age":         25,
               "about":       "I love to go rock climbing",
               "interests": [ "sports", "music" ]
            }
         }
      ]
   }
}

⑧:高亮我们的搜索

在之前的语句上增加highlight参数:

GET /megacorp/employee/_search
{
    "query" : {
        "match_phrase" : {
            "about" : "rock climbing"
        }
    },
    "highlight": {
        "fields" : {
            "about" : {}
        }
    }
}

结果为:并且用<em>标签来标识匹配的单词

{
   ...
   "hits": {
      "total":      1,
      "max_score":  0.23013961,
      "hits": [
         {
            ...
            "_score":         0.23013961,
            "_source": {
               "first_name":  "John",
               "last_name":   "Smith",
               "age":         25,
               "about":       "I love to go rock climbing",
               "interests": [ "sports", "music" ]
            },
            "highlight": {
               "about": [
                  "I love to go <em>rock</em> <em>climbing</em>" <1>
               ]
            }
         }
      ]
   }
}

<1>原有文本中高亮的片段

 

四、聚合

Elasticsearch有一个功能叫做聚合(aggregations)他允许在数据上生成复杂的分析统计,就像SQL中的GROUP BY,但是功能上更强大。

比如查看员工中最大的共同点是什么

GET /megacorp/employee/_search
{
  "aggs": {
    "all_interests": {
      "terms": { "field": "interests" }
    }
  }
}

结果:

{
   ...
   "hits": { ... },
   "aggregations": {
      "all_interests": {
         "buckets": [
            {
               "key":       "music",
               "doc_count": 2
            },
            {
               "key":       "forestry",
               "doc_count": 1
            },
            {
               "key":       "sports",
               "doc_count": 1
            }
         ]
      }
   }
}

我们可以看到结果中匹配的数据。

如果我们要增加条件,比如增加姓氏为Smith的最大兴趣爱好,只要加过滤就好:

GET /megacorp/employee/_search
{
  "query": {
    "match": {
      "last_name": "smith"
    }
  },
  "aggs": {
    "all_interests": {
      "terms": {
        "field": "interests"
      }
    }
  }
}

 

结果:

...
  "all_interests": {
     "buckets": [
        {
           "key": "music",
           "doc_count": 2
        },
        {
           "key": "sports",
           "doc_count": 1
        }
     ]
  }

聚合页允许分级汇总,比如统计每种兴趣下职工的平均年龄:

GET /megacorp/employee/_search
{
    "aggs" : {
        "all_interests" : {
            "terms" : { "field" : "interests" },
            "aggs" : {
                "avg_age" : {
                    "avg" : { "field" : "age" }
                }
            }
        }
    }
}

结果:

...
  "all_interests": {
     "buckets": [
        {
           "key": "music",
           "doc_count": 2,
           "avg_age": {
              "value": 28.5
           }
        },
        {
           "key": "forestry",
           "doc_count": 1,
           "avg_age": {
              "value": 35
           }
        },
        {
           "key": "sports",
           "doc_count": 1,
           "avg_age": {
              "value": 25
           }
        }
     ]
  }