Cisco双ISP双链路NAT接入案例_原理分析

加群交流在后台回复“加群”,添加小编微信,小编拉你进去


后台回复“724”获取入门资料


一、实验拓扑:

Cisco双ISP双链路NAT接入案例_内网_02

二、需求概述:

R1、R2作为本地网络12.0.0.0/24、21.0.0.0/24的网关,为连接远端R5上的网段5.0.0.0/24,分别向两个ISP(ISP1、ISP2)申请了1条Internet线路。R3、R4分别给R1、R2一个独立的公网地址(R3分配R1:13.0.0.1、分配R2:13.0.0.2;R4分配R1:14.0.0.1、分配R2:24.0.0.2)。由于R1、R2为Stub AS,故考虑使用浮动静态路由+负载均衡的方式对外访问。其中R1主路由下一跳指向R3 e0/0;R2主路由下一跳指向R4 e0/1。

三、实现方法:双ISP双线接入时,网关所使用的nat内部全局地址应为所选线路对应的IP地址(或者该端口所对应的pool)。由于不同ISP有各自对应的出端口,NAT为使用不同的ISP地址段,内部本地地址池除了要判断本地Vlan的地址外,还要判断所选路由对应出接口。所以这里要使用到route-map针对源地址和出端口进行筛选。而判断出端口的任务,就交由带track的浮动静态路由实现。四、配置过程:

R1:

track 3 ip sla 3

track 4 ip sla 4

track 50 ip route 5.0.0.0 255.255.255.0  reachability

interface e0/2

 ip address 13.0.0.1 255.255.255.0

 ip nat outside

interface e0/3

 ip address 14.0.0.1 255.255.255.0

 ip nat outside

interface e0/0

 ip address 12.0.0.1 255.255.255.0

 ip nat inside

 standby 12 ip 12.0.0.254

 standby 12 priority 150

 standby 12 preempt

 standby 12 track 50 decrement 100

interface e0/1

 ip address 21.0.0.1 255.255.255.0

 ip nat inside 

 standby 21 ip 21.0.0.254

 standby 21 preempt

 standby 21 track 50 decrement 100

ip nat inside source route-map TO_R3_NAT interface e0/2 overload

ip nat inside source route-map TO_R4_NAT interface e0/3 overload

ip route 5.0.0.0 255.255.255.0 13.0.0.3 50 track 3

ip route 5.0.0.0 255.255.255.0 14.0.0.4 100 track 4

ip access-list standard VLAN_12

permit 12.0.0.0 0.0.0.255

ip access-list standard VLAN_21

permit  21.0.0.0  0.0.0.255

ip sla 3

  icmp-echo 13.0.0.3

 exit

ip sla schedule 3 life forever start-time now

ip sla 4

  icmp-echo 14.0.0.4

  exit

ip sla schedule 4 life forever start-time now

route-map TO_R3_NAT permit 10

  match ip address  VLAN_12 VLAN_21

  match  interface  e0/2

route-map TO_R4_NAT permit 10

 match ip address VLAN_12 VLAN_21

  match interface e0/3


R2:

track 3 ip sla 3

track 4 ip sla 4

track 50 ip route 5.0.0.0 255.255.255.0 reachability

interface Loopback 0

 ip address 2.2.2.2  255.255.255.255

interface e0/2

  ip address  23.0.0.2  255.255.255.0

  ip  nat  outside

  no shut

interface  e0/3

  ip  address  24.0.0.2  255.255.255.0

  ip  nat  outside

  no shut

interface e0/1

  ip  address 12.0.0.2  255.255.255.0

  ip  nat  inside

  standby 12 preempt

  standby 12 ip  12.0.0.254

  standby 12  track  50  decrement  100

  no shut

interface e0/0

  ip  address  21.0.0.2  255.255.255.0

  ip  nat  inside

  standby  21  ip  21.0.0.254

  standby  21  priority  150

  standby  21  preempt

  standby  21  track  50  decrement  100

  no shut

ip nat  inside source route-map TO_R3_NAT interface e0/2 overload

ip nat  inside source route-map TO_R4_NAT interface e0/3 overload

ip route 5.0.0.0 255.255.255.0 23.0.0.3 100 track 3

ip route 5.0.0.0 255.255.255.0 24.0.0.4 50 track 4

ip access-list standard VLAN_12

 permit 12.0.0.0 0.0.0.255

 exit

ip access-list standard  VLAN_21 

 permit 21.0.0.0 0.0.0.255

ip sla 3

 icmp-echo 23.0.0.3

 exit

ip sla schedule 3 life forever start-time now

ip sla 4

icmp-echo 24.0.0.4

exit

ip sla schedule 4 life forever start-time now

route-map TO_R3_NAT permit 10

  match ip address VLAN_12 VLAN_21

  match interface e0/2

route-map TO_R4_NAT permit 10

 match ip address VLAN_12 VLAN_21

 match interface e0/3

R3:


interface Loopback 0

  ip  address  3.3.3.3  255.255.255.255

interface e0/0

  ip  address 13.0.0.3 255.255.255.0

  no shut

interface e0/1

  ip  address  23.0.0.3 255.255.255.0

  no shut

interface S1/0

  ip  address  35.0.0.3  255.255.255.0

  encapsulation  ppp

  no shut

  exit

router eigrp  12345

  passive-interface  e0/0

  passive-interface  e0/1

  passive-interface  Loopback 0

  network  3.3.3.3  0.0.0.0

  network  13.0.0.3  0.0.0.0

  network 23.0.0.3  0.0.0.0

  network 35.0.0.3  0.0.0.0

  eigrp  router-id  3.3.3.3

R4:

interface Loopback 0

 ip address 4.4.4.4 255.255.255.255

interface e0/0

 ip address 14.0.0.4 255.255.255.0

 no shut 

interface e0/1

 ip address 24.0.0.4 255.255.255.0

 no shut

interface S1/0

  ip address 45.0.0.4 255.255.255.0

  encapsulation ppp

  no shut

  exit 

router eigrp 12345 

 passive-interface e0/0

 passive-interface e0/1

 passive-interface Loopback 0

 network 4.4.4.4 0.0.0.0

 network 14.0.0.4 0.0.0.0

 network 24.0.0.4 0.0.0.0

 network 45.0.0.4 0.0.0.0

 eigrp router-id 4.4.4.4

R5:

interface Loopback 0

  ip address 5.5.5.5 255.255.255.255

interface Loopback 1

  ip address 5.0.0.1 255.255.255.0

interface Serial1/0

 ip address 35.0.0.5 255.255.255.0

 encapsulation ppp

 no shut

interface Serial1/1

  ip address 45.0.0.5 255.255.255.0

  encapsulation ppp

  no shut

  exit

router eigrp 12345

  passive-interface Loopback 0

  passive-interface Loopback 1

  network 5.0.0.1 0.0.0.0

  network 5.5.5.5 0.0.0.0

  network 35.0.0.5 0.0.0.0

  network 45.0.0.5 0.0.0.0

  eigrp router-id 5.5.5.5


五、结果测试:本实验假设网关R1使用R3作为主路由,R2使用R4作为主路由。由于R1使用到SLA监控R3端口IP的可达性,因此先查看SLA状态:

Cisco双ISP双链路NAT接入案例_内网_03

要在静态路由中使用sla的状态,必须先用track跟踪sla状态:

Cisco双ISP双链路NAT接入案例_ip地址_04

最后,检查R1的浮动静态路由是否正确使用到SLA返回的状态选择路由:

Cisco双ISP双链路NAT接入案例_原理分析_05

经过配置,在模拟互联网中不存在12.0.0.0/2421.0.0.0/24两个内网IP地址段的情况下,客户端可正常连接到远端网段:

pc1:

Cisco双ISP双链路NAT接入案例_内网_06

由于R1使用ISP1R3)作为主路由,因此经过R1的内网数据包被R1NAT进程映射到R3所分配的IP地址。

R1 NAT状态debug

Cisco双ISP双链路NAT接入案例_原理分析_07

重头戏来了!必须验证R1能够在R3实效的情况下正确切换到R4。现在关闭R3e0/0端口,并检查SLA3的返回情况:

Cisco双ISP双链路NAT接入案例_ip地址_08

同样,track3的状态随之改变:

Cisco双ISP双链路NAT接入案例_原理分析_09

我们最为关心的路由表情况:

Cisco双ISP双链路NAT接入案例_静态路由_10

当然,测试连通性是最主要的:

Cisco双ISP双链路NAT接入案例_静态路由_11

其实,由于R4没有R1-R3的路由,NAT肯定是以R1-R4的端口IP作转换的。以防万一,检查R1NAT转换情况:

Cisco双ISP双链路NAT接入案例_ide_12

至此实验完成!



END