双目摄像头的标定和测距
- 摄像头测试
- 摄像头标定
- 图像获取
- 摄像头标定
- 摄像头测距
运行环境 | Ubuntu 18.04 LTS |
ROS version | Melodic |
OpenCV1 | 3.2.0 |
gcc version | 7.5.0 |
摄像头测试
若要使用以下代码需要更改代码中双目摄像头的描述符。
并且需要用到一个 camera.sh 脚本,该脚本是商家提供的。
// Test.cpp
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main()
{
VideoCapture Camera(4); //需要改成你系统中双目摄像头的标识符
if (!Camera.isOpened())
{
cout << "Could not open the Camera " << endl;
return -1;
}
Mat Fream;
Camera >> Fream;
imshow("Double",Fream);
Mat DoubleImage;
system("/home/oision/camera.sh"); //此处改成你的脚本存放绝对路径
//imshow("【双目视图】",Fream);
while (true)
{
Camera >> Fream;
if (Fream.empty()) break;
resize(Fream, DoubleImage, Size(640, 240), (0, 0), (0, 0), INTER_AREA);
imshow("Double", DoubleImage);
Mat LeftImage = DoubleImage(Rect(0, 0, 320, 240));
Mat RightImage = DoubleImage(Rect(320, 0, 320, 240));
imshow("Left", LeftImage);
imshow("Right", RightImage);
char key = waitKey(30);
char c = cvWaitKey(30);
if (c == 27)//Esc键退出
{
break;
}
}
return 0;
}
编译及运行命令:
g++ Test.cpp -o test `pkg-config --cflags --libs opencv`
./test
运行效果:
摄像头标定
这部分分为拍照和标定获取参数两个部分。这部分程序运行结束后,会生成一个 intrinsics.yml2
图像获取
采用以下代码对标定版图片进行不同角度、不同距离的信息采集。按下 ESC 键将图像保存至设定的路径。
// Capturer.cpp
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main()
{
VideoCapture Camera(4); //需要改成你系统中双目摄像头的标识符
if (!Camera.isOpened())
{
cout << "Could not open the Camera" << endl;
return -1;
}
Mat Fream;
Camera >> Fream;
imshow("Double",Fream);
system("~/camera.sh"); //此处改成你的脚本存放绝对路径
//setMouseCallback("Double", on_Mouse);
Mat DoubleImage;
char buf[50] = { 0 };
while (true) {
Camera >> Fream;
if (Fream.empty()) break;
resize(Fream, DoubleImage, Size(640, 240), (0, 0), (0, 0), INTER_AREA);
imshow("Double", DoubleImage);
Mat LeftImage = DoubleImage(Rect(0, 0, 320, 240));
Mat RightImage = DoubleImage(Rect(320, 0, 320, 240));
imshow("Left", LeftImage);
imshow("Right", RightImage);
char key = waitKey(30);
static int i = 0;
if (key == 27) {
// imwrite("/home/oision/camera_label/test.png", LeftImage);
// 设置保存路径
sprintf(buf, "/home/oision/camera_label/left_%d.png", i); //存储地址要写绝对路径
cout << buf << endl;
imwrite(buf, LeftImage);
sprintf(buf, "/home/oision/camera_label/right_%d.png", i);
cout << buf << endl;
imwrite(buf, RightImage);
sprintf(buf, "/home/oision/camera_label/doub_%d.png", i);
cout << buf << endl;
imwrite(buf, DoubleImage);
i++;
}
}
return 0;
}
摄像头标定
首先编写 stereo_calibration.xml 文件,内容如下(请根据具体情况修改图片路径):
<?xml version="1.0"?>
<opencv_storage>
<images>
"/home/oision/camera_label/left_0.png"
"/home/oision/camera_label/right_0.png"
"/home/oision/camera_label/left_1.png"
"/home/oision/camera_label/right_1.png"
"/home/oision/camera_label/left_2.png"
"/home/oision/camera_label/right_2.png"
"/home/oision/camera_label/left_3.png"
"/home/oision/camera_label/right_3.png"
"/home/oision/camera_label/left_4.png"
"/home/oision/camera_label/right_4.png"
"/home/oision/camera_label/left_5.png"
"/home/oision/camera_label/right_5.png"
"/home/oision/camera_label/left_6.png"
"/home/oision/camera_label/right_6.png"
"/home/oision/camera_label/left_7.png"
"/home/oision/camera_label/right_7.png"
"/home/oision/camera_label/left_8.png"
"/home/oision/camera_label/right_8.png"
</images>
</opencv_storage>
标定程序运行开始后会从 stereo_calibration.xml 文件获取采集到的图片路径,依次读取图片进行标定。
标定代码:
// Calibration.cpp
#if 1
#include <iostream>
#include <stdio.h>
#include <time.h>
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <opencv2/opencv.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/core.hpp>
#include <stdlib.h>
// 此处参数需要根据棋盘格个数修改
// 例如 黑白棋盘格 宽(w)为10个棋盘格 那么 w 为 10 -1 = 9
#define w 9 // 棋盘格宽的黑白交叉点个数
#define h 6 // 棋盘格高的黑白交叉点个数
const float chessboardSquareSize = 24.6f; // 每个棋盘格方块的边长 单位 为 mm
using namespace std;
using namespace cv;
// 从 xml 文件中读取图片存储路径
static bool readStringList(const string& filename, vector<string>& list)
{
list.resize(0);
FileStorage fs(filename, FileStorage::READ);
if (!fs.isOpened())
return false;
FileNode n = fs.getFirstTopLevelNode();
if (n.type() != FileNode::SEQ)
return false;
FileNodeIterator it = n.begin(), it_end = n.end();
for (; it != it_end; ++it)
list.push_back((string)*it);
return true;
}
// 记录棋盘格角点个数
static void calcChessboardCorners(Size boardSize, float squareSize, vector<Point3f>& corners)
{
corners.resize(0);
for (int i = 0; i < boardSize.height; i++) //height和width位置不能颠倒
for (int j = 0; j < boardSize.width; j++)
{
corners.push_back(Point3f(j*squareSize, i*squareSize, 0));
}
}
bool calibrate(Mat& intrMat, Mat& distCoeffs, vector<vector<Point2f>>& imagePoints,
vector<vector<Point3f>>& ObjectPoints, Size& imageSize, const int cameraId,
vector<string> imageList)
{
double rms = 0; //重投影误差
Size boardSize;
boardSize.width = w;
boardSize.height = h;
vector<Point2f> pointBuf;
float squareSize = chessboardSquareSize;
vector<Mat> rvecs, tvecs; // 定义两个摄像头的旋转矩阵 和平移向量
bool ok = false;
int nImages = (int)imageList.size() / 2;
cout <<"图片张数"<< nImages;
namedWindow("View", 1);
int nums = 0; // 有效棋盘格图片张数
for (int i = 0; i< nImages; i++)
{
Mat view, viewGray;
cout<<"Now: "<<imageList[i * 2 + cameraId]<<endl;
view = imread(imageList[i * 2 + cameraId], 1); // 读取图片
imageSize = view.size();
cvtColor(view, viewGray, COLOR_BGR2GRAY); // 转化成灰度图
bool found = findChessboardCorners(view, boardSize, pointBuf,
CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FAST_CHECK | CV_CALIB_CB_NORMALIZE_IMAGE);//寻找棋盘格角点
if (found)
{
nums++;
cornerSubPix(viewGray, pointBuf, Size(11, 11), Size(-1, -1), TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
drawChessboardCorners(view, boardSize, Mat(pointBuf), found);
bitwise_not(view, view);
imagePoints.push_back(pointBuf);
cout << '.';
}
else{
cout<<"Wrong"<<endl;
}
imshow("View", view);
waitKey(100);
}
cout << "有效棋盘格张数" << nums << endl;
// calculate chessboardCorners
calcChessboardCorners(boardSize, squareSize, ObjectPoints[0]);
ObjectPoints.resize(imagePoints.size(), ObjectPoints[0]);
rms = calibrateCamera(ObjectPoints, imagePoints, imageSize, intrMat, distCoeffs,
rvecs, tvecs);
ok = checkRange(intrMat) && checkRange(distCoeffs);
if (ok)
{
cout << "done with RMS error=" << rms << endl;
return true;
}
else
return false;
}
int main()
{
// initialize some parameters
bool okcalib = false;
Mat intrMatFirst, intrMatSec, distCoeffsFirst, distCoffesSec;
Mat R, T, E, F, RFirst, RSec, PFirst, PSec, Q;
vector<vector<Point2f>> imagePointsFirst, imagePointsSec;
vector<vector<Point3f>> ObjectPoints(1);
Rect validRoi[2];
Size imageSize;
int cameraIdFirst = 0, cameraIdSec = 1;
double rms = 0;
// get pictures and calibrate
vector<string> imageList;
string filename = "stereo_calibration.xml";
bool okread = readStringList(filename, imageList);
if (!okread || imageList.empty())
{
cout << "can not open " << filename << " or the string list is empty" << endl;
return false;
}
if (imageList.size() % 2 != 0)
{
cout << "Error: the image list contains odd (non-even) number of elements\n";
return false;
}
FileStorage fs("intrinsics.yml", FileStorage::WRITE);
// calibrate
cout << "calibrate left camera..." << endl;
okcalib = calibrate(intrMatFirst, distCoeffsFirst, imagePointsFirst, ObjectPoints,
imageSize, cameraIdFirst, imageList);
if (!okcalib)
{
cout << "fail to calibrate left camera" << endl;
return -1;
}
else
{
cout << "calibrate the right camera..." << endl;
}
okcalib = calibrate(intrMatSec, distCoffesSec, imagePointsSec, ObjectPoints,
imageSize, cameraIdSec, imageList);
fs << "M1" << intrMatFirst << "D1" << distCoeffsFirst <<
"M2" << intrMatSec << "D2" << distCoffesSec;
if (!okcalib)
{
cout << "fail to calibrate the right camera" << endl;
return -1;
}
destroyAllWindows();
// estimate position and orientation
cout << "estimate position and orientation of the second camera" << endl
<< "relative to the first camera..." << endl;
cout << "intrMatFirst:";
cout << intrMatFirst << endl;
cout << "distCoeffsFirst:";
cout << distCoeffsFirst << endl;
cout << "intrMatSec:";
cout << intrMatSec << endl;
cout << "distCoffesSec:";
cout << distCoffesSec << endl;
rms = stereoCalibrate(ObjectPoints, imagePointsFirst, imagePointsSec,
intrMatFirst, distCoeffsFirst, intrMatSec, distCoffesSec,
imageSize, R, T, E, F, CALIB_USE_INTRINSIC_GUESS,//CV_CALIB_FIX_INTRINSIC,
TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, 1e-6)); //计算重投影误差
cout << "done with RMS error=" << rms << endl;
// stereo rectify
cout << "stereo rectify..." << endl;
stereoRectify(intrMatFirst, distCoeffsFirst, intrMatSec, distCoffesSec, imageSize, R, T, RFirst,
RSec, PFirst, PSec, Q, CALIB_ZERO_DISPARITY, -1, imageSize, &validRoi[0], &validRoi[1]);
cout << "Q" << Q << endl;
cout << "P1" << PFirst << endl;
cout << "P2" << PSec << endl;
// read pictures for 3d-reconstruction
if (fs.isOpened())
{
cout << "in";
fs << "R" << R << "T" << T << "R1" << RFirst << "R2" << RSec << "P1" << PFirst << "P2" << PSec << "Q" << Q;
fs.release();
}
namedWindow("canvas", 1);
cout << "read the picture for 3d-reconstruction..."<<endl;;
Mat canvas(imageSize.height, imageSize.width * 2, CV_8UC3), viewLeft, viewRight;
Mat canLeft = canvas(Rect(0, 0, imageSize.width, imageSize.height));
Mat canRight = canvas(Rect(imageSize.width, 0, imageSize.width, imageSize.height));
viewLeft = imread(imageList[6], 1); // cameraIdFirst
viewRight = imread(imageList[7], 1); // cameraIdSec
cout<<"Choose: "<<imageList[6]<<" "<<imageList[7]<<endl;
viewLeft.copyTo(canLeft);
viewRight.copyTo(canRight);
cout << "done" << endl;
imshow("canvas", canvas);
waitKey(1500); // 必须要加waitKey ,否则可能存在无法显示图像问题
//stereoRectify
Mat rmapFirst[2], rmapSec[2], rviewFirst, rviewSec;
initUndistortRectifyMap(intrMatFirst, distCoeffsFirst, RFirst, PFirst,
imageSize, CV_16SC2, rmapFirst[0], rmapFirst[1]);//CV_16SC2
initUndistortRectifyMap(intrMatSec, distCoffesSec, RSec, PSec,//CV_16SC2
imageSize, CV_16SC2, rmapSec[0], rmapSec[1]);
remap(viewLeft, rviewFirst, rmapFirst[0], rmapFirst[1], INTER_LINEAR);
imshow("remap", rviewFirst);
waitKey(2000);
remap(viewRight, rviewSec, rmapSec[0], rmapSec[1], INTER_LINEAR);
rviewFirst.copyTo(canLeft);
rviewSec.copyTo(canRight);
//rectangle(canLeft, validRoi[0], Scalar(255, 0, 0), 3, 8);
//rectangle(canRight, validRoi[1], Scalar(255, 0, 0), 3, 8);
Mat before_rectify = imread("/home/oision/camera_label/doub_0.png");
// 地址改为保存的双目图像
for (int j = 0; j <= canvas.rows; j += 16) //画绿线
line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8);
for (int j = 0; j <= canvas.rows; j += 16) //画绿线
line(before_rectify, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8);
cout << "stereo rectify done" << endl;
imshow("Before", before_rectify); //显示画绿线的校正后图像
imshow("After", canvas); //显示画绿线的校正前图像
waitKey(400000);
//官方解释 http://masikkk.com/article/OpenCV-imshow-waitkey/
/* http://masikkk.com/article/OpenCV-imshow-waitkey/
A common mistake for OpenCV newcomers is to call cv::imshow() in a loop through video frames,
without following up each draw with cv::waitKey(30).In this case, nothing appears on screen,
because highgui is never given time to process the draw requests from cv::imshow().
*/
return 0;
}
#endif
过程出现类似于下图的窗口及代表该图片有效:
代码执行结束会显示 remap 后的图像及得到我们需要的 intrinsics.yml 文件。
摄像头测距
待补充–
- OpenCV 为安装 ROS 时默认安装的版本,具体安装教程可搜索其他相关文章。 ↩︎
- 这个文件里保存了摄像头的参数:左右内参矩阵、左右畸变参数、平移向量、旋转向量等。 ↩︎