import pandas as pd
# DateFrame中,index为行索引,columns为列索引
pd.set_option('display.unicode.east_asian_width', True)
s1 = 'H:\pythonProject\COD1.csv'
s2 = pd.read_csv(s1, index_col=0) # 指定第一列为行索引
print(s2) # 输出原始数据
###Series结构索引
s3 = pd.read_csv(s1)
print('*****---' * 10)
print(s3) # 输出原始数据
print('*****---' * 10)
a1 = pd.Series([10, 20, 30], index=list("abc"))
a2 = pd.Series([1, 2, 3], index=list("bcd"))
print(a1) # 输出原始数据
print(a2) # 输出原始数据
print(a1 + a2) # 利用索引实现数据的相加减
##利用reindex重新设置索引。
print('*****---' * 10)
print(a1.reindex([1, 2, 3, 4, 5], fill_value=1)) # 重新设置索引,并用1填充
##DataFrame重新设置索引
s4 = s3.reindex(index=['测试行索引1', '测试行索引2', '测试行索引3', '测试行索引4', '测试行索引5', '测试行索引6', '测试行索引7'],
columns=['测试列索引1', '测试列索引2', '测试列索引3', '测试列索引4', '测试列索引5', '测试列索引6', '测试列索引7',
'测试列索引8', '测试列索引9', '测试列索引10', '测试列索引11', '测试列索引12'])
print('*****---' * 10)
print(s4) # 输出原始数据
print('*****---' * 10)
print(s3)
print('*****---' * 10)
print(s3.set_index(['COD']))
结果为
H:\pythonProject\venv\Scripts\python.exe H:/pythonProject/main.py
COD b1 b2 b3 b4 b5
s1 6.246465 0.033064 0.044745 0.063753 0.046467 0.061651
s2 7.300000 0.032765 0.040027 0.060715 0.047964 0.062193
s3 7.151515 0.034787 0.044034 0.068569 0.047349 0.062583
s4 5.858586 0.038918 0.054270 0.070237 0.049240 0.063075
s5 7.458586 0.037524 0.047527 0.065471 0.046837 0.060580
s6 7.458586 0.044111 0.055397 0.075133 0.052282 0.067838
s7 7.022222 0.043152 0.056629 0.072561 0.052936 0.070106
s8 7.846465 0.044698 0.061596 0.073882 0.053898 0.073508
s9 10.561616 0.042522 0.060696 0.069076 0.051668 0.080740
s10 2.828283 0.048858 0.057816 0.077516 0.056419 0.081748
s11 8.492929 0.041209 0.058360 0.070019 0.053007 0.095129
s12 12.581818 0.046677 0.067138 0.071816 0.052377 0.082932
s11 8.492929 0.041209 0.058360 0.070019 0.053007 0.095129
*****---*****---*****---*****---*****---*****---*****---*****---*****---*****---
Unnamed: 0 COD b1 b2 b3 b4 b5
0 s1 6.246465 0.033064 0.044745 0.063753 0.046467 0.061651
1 s2 7.300000 0.032765 0.040027 0.060715 0.047964 0.062193
2 s3 7.151515 0.034787 0.044034 0.068569 0.047349 0.062583
3 s4 5.858586 0.038918 0.054270 0.070237 0.049240 0.063075
4 s5 7.458586 0.037524 0.047527 0.065471 0.046837 0.060580
5 s6 7.458586 0.044111 0.055397 0.075133 0.052282 0.067838
6 s7 7.022222 0.043152 0.056629 0.072561 0.052936 0.070106
7 s8 7.846465 0.044698 0.061596 0.073882 0.053898 0.073508
8 s9 10.561616 0.042522 0.060696 0.069076 0.051668 0.080740
9 s10 2.828283 0.048858 0.057816 0.077516 0.056419 0.081748
10 s11 8.492929 0.041209 0.058360 0.070019 0.053007 0.095129
11 s12 12.581818 0.046677 0.067138 0.071816 0.052377 0.082932
12 s11 8.492929 0.041209 0.058360 0.070019 0.053007 0.095129
*****---*****---*****---*****---*****---*****---*****---*****---*****---*****---
a 10
b 20
c 30
dtype: int64
b 1
c 2
d 3
dtype: int64
a NaN
b 21.0
c 32.0
d NaN
dtype: float64
*****---*****---*****---*****---*****---*****---*****---*****---*****---*****---
1 1
2 1
3 1
4 1
5 1
dtype: int64
*****---*****---*****---*****---*****---*****---*****---*****---*****---*****---
测试列索引1 测试列索引2 ... 测试列索引11 测试列索引12
测试行索引1 NaN NaN ... NaN NaN
测试行索引2 NaN NaN ... NaN NaN
测试行索引3 NaN NaN ... NaN NaN
测试行索引4 NaN NaN ... NaN NaN
测试行索引5 NaN NaN ... NaN NaN
测试行索引6 NaN NaN ... NaN NaN
测试行索引7 NaN NaN ... NaN NaN
[7 rows x 12 columns]
*****---*****---*****---*****---*****---*****---*****---*****---*****---*****---
Unnamed: 0 COD b1 b2 b3 b4 b5
0 s1 6.246465 0.033064 0.044745 0.063753 0.046467 0.061651
1 s2 7.300000 0.032765 0.040027 0.060715 0.047964 0.062193
2 s3 7.151515 0.034787 0.044034 0.068569 0.047349 0.062583
3 s4 5.858586 0.038918 0.054270 0.070237 0.049240 0.063075
4 s5 7.458586 0.037524 0.047527 0.065471 0.046837 0.060580
5 s6 7.458586 0.044111 0.055397 0.075133 0.052282 0.067838
6 s7 7.022222 0.043152 0.056629 0.072561 0.052936 0.070106
7 s8 7.846465 0.044698 0.061596 0.073882 0.053898 0.073508
8 s9 10.561616 0.042522 0.060696 0.069076 0.051668 0.080740
9 s10 2.828283 0.048858 0.057816 0.077516 0.056419 0.081748
10 s11 8.492929 0.041209 0.058360 0.070019 0.053007 0.095129
11 s12 12.581818 0.046677 0.067138 0.071816 0.052377 0.082932
12 s11 8.492929 0.041209 0.058360 0.070019 0.053007 0.095129
*****---*****---*****---*****---*****---*****---*****---*****---*****---*****---
Unnamed: 0 b1 b2 b3 b4 b5
COD
6.246465 s1 0.033064 0.044745 0.063753 0.046467 0.061651
7.300000 s2 0.032765 0.040027 0.060715 0.047964 0.062193
7.151515 s3 0.034787 0.044034 0.068569 0.047349 0.062583
5.858586 s4 0.038918 0.054270 0.070237 0.049240 0.063075
7.458586 s5 0.037524 0.047527 0.065471 0.046837 0.060580
7.458586 s6 0.044111 0.055397 0.075133 0.052282 0.067838
7.022222 s7 0.043152 0.056629 0.072561 0.052936 0.070106
7.846465 s8 0.044698 0.061596 0.073882 0.053898 0.073508
10.561616 s9 0.042522 0.060696 0.069076 0.051668 0.080740
2.828283 s10 0.048858 0.057816 0.077516 0.056419 0.081748
8.492929 s11 0.041209 0.058360 0.070019 0.053007 0.095129
12.581818 s12 0.046677 0.067138 0.071816 0.052377 0.082932
8.492929 s11 0.041209 0.058360 0.070019 0.053007 0.095129
进程已结束,退出代码为 0