前言:
在手机充电中常常使用充电指示灯来观察手机充电状态,比如说将手机插上USB线充电时指示灯会亮,如果拔出USB,指示灯会灭,在充电时候通常我们设置电池电量0~90%时,指示灯为红色,电量为90%~100%时候,显示为绿色。当然充电又分为开机充电和
关机充电,本文着重从关机充电模式讲解guide-led的实现机制
一、关机充电下,指示灯实现整体流程框架
在关机下,插入USB充电,系统会上电启动内核,并且加载相关的服务(Linux 用户空间进程),其中就有关机充电服务/sytem/bin/charge,其中服务端的启动定义在开机初始化话文件init.rc中,如下:
- service charge /bin/charge
- user root
- oneshot
其中charge程序由vendor/sprd/open-source/apps/charge/charge.c实现。
实现流程框架图如下:
该图可以分为两个部分,Linux user和kernel 层两个部分,charge 执行从创建charge线程开始到调用kernel set_brightness完成
对guide-led的控制。
二、关机充电下,指示灯实现具体流程
==========linux user process部分==========
1. 电池充电主程序入口
文件:vendor/sprd/open-source/apps/charge/charge.c
- int
- main(int argc, char **argv) {
- .....
- ret = pthread_create(&t_1, NULL, charge_thread, NULL);
- if(ret){
- "thread:charge_thread creat failed\n");
- return -1;
- }
- "all thread start\n");
- pthread_join(t_1, NULL);
- .....
- "charge app exit\n");
- return EXIT_SUCCESS;
- }
在主程序中,创建charge_thread用来检测电池状态,然后根据充电电量的变化来控制充电指示灯
2. 充电线程的定义
文件:vendor/sprd/open-source/apps/charge/ui.c
- #define WakeFileName "/sys/power/wait_for_fb_wake"
- void *charge_thread(void *cookie)
- {
- .....
- for (;!is_exit;) {
- fd = open(WakeFileName, O_RDONLY, 0);
- if (fd < 0) {
- "Couldn't open file /sys/power/wait_for_fb_wake\n");
- return NULL;
- }
- do {
- err = read(fd, &buf, 1);
- "return from WakeFileName err: %d errno: %s\n", err, strerror(errno));
- while (err < 0 && errno == EINTR);
- close(fd);
- bat_level = battery_capacity();
- update_progress_locked(bat_level);
- usleep(500000);
- }
- ......
- usleep(200);
- return NULL;
- }
改线程中有一个循环体,其中battery_capacity用来获取电池容量,
将电池容量不断的传入update_progress_locked方法中
3.update_progress_locked方法的实现
- static void update_progress_locked(int level)
- {
- ......
- // Draw only the progress bar
- }
在update_progress_locked中,又调用draw_progress_locked方法
4.draw_process_locked方法的实现
[cpp] view plain copy
- #define LED_GREEN 1
- #define LED_RED 2
- #define LED_BLUE 3
- static void draw_progress_locked(int level)
- {
- .....
- if(level > 100)
- //处理电池电量的上限
- else if (level < 0)//处理电池电量的下限
- level = 0;
- if(level < 90){
- if(led_flag!= LED_RED){
- led_on(LED_RED);
- //如果电池电量低于90亮绿灯
- }
- else{
- if(led_flag!= LED_GREEN){ //如果电池电量90~100 亮红灯
- //调用亮灯函数
- led_flag = LED_GREEN;
- }
- }
- .....
- }
5. 亮灯函数led_on的实现
文件:vendor/sprd/open-source/apps/charge/backlight.c
- void led_on(int color)
- {
- if(color == 1){
- eng_led_green_test(max_green_led/2);
- eng_led_red_test(0);
- eng_led_blue_test(0);
- else if(color == 2){
- eng_led_red_test(max_red_led/2);
- eng_led_green_test(0);
- eng_led_blue_test(0);
- else if(color == 3){
- eng_led_blue_test(0);
- eng_led_red_test(max_green_led/2);
- eng_led_green_test(max_red_led/2);
- else
- "%s: color is %d invalid\n",__func__,color);
- }
在亮灯函数led_on 中, 通过传入的参数clor 来区分不能颜色灯,这里以绿灯为例
6. 亮绿灯函数eng_led_green_test的实现
[cpp] view plain copy
- static int eng_led_green_test(int brightness)
- {
- int fd;
- int ret;
- char buffer[8];
- //打开绿灯设备节点
- if(fd < 0) {
- "%s: open %s fail",__func__, LED_GREEN_DEV);
- return -1;
- }
- sizeof(buffer));
- "%d", brightness);
- //向节点中写入数据brightness值
- close(fd);
- return 0;
- }
亮绿灯函数eng_led_green_test的实现非常容易,就是向指定的节点中写入数据brightness值,而brightness值的范围为0~255 ,这个值直接决定了pwm输入的占空比,进而影响灯的亮度。查看设备节点定义如下:
#define LED_GREEN_DEV "/sys/class/leds/green/brightness"
#define LED_RED_DEV "/sys/class/leds/red/brightness"
#define LED_BLUE_DEV "/sys/class/leds/blue/brightness"
上面的节点分别对应为红,绿,蓝三色灯对应的控制节点
==========linux driver kernel 部分==========
也就是说当我们调用write接口后,应用层点灯过程就已经结束了,接下来write会通过Linux VFS调用底层的xxx_write函数,
由于这里定义为/sys 目录下的设备模型节点,所以对应写函数应该为 xxx_store_xxx才对。
7.驱动层的led_on写函数实现
文件:kernel/drivers/leds/leds-sprd-bltc-rgb.c
- static ssize_t store_on_off(struct device *dev,
- struct device_attribute *attr, const char *buf, size_t size)
- {
- struct led_classdev *led_cdev = dev_get_drvdata(dev);
- long state;
- ssize_t ret = -EINVAL;
- ret = kstrtoul(buf, 10, &state);
- "onoff_state_value:%1ld\n",state);
- onoff_value = state;
- led_cdev->flags = ONOFF;
- sprd_leds_bltc_rgb_set(led_cdev,state);
- return size;
- }
在上述的写函数中又调用sprd_leds_bltc_rgb_set函数,并且将brightness值传入
8.sprd_leds_bltc_rgb_set的实现
- static void sprd_leds_bltc_rgb_set(struct led_classdev *bltc_rgb_cdev,enum led_brightness value)
- {
- struct sprd_leds_bltc_rgb *brgb;
- long flags;
- brgb = to_sprd_bltc_rgb(bltc_rgb_cdev);
- spin_lock_irqsave(&brgb->value_lock, flags);
- brgb->leds_flag = bltc_rgb_cdev->flags;
- brgb->value = value;
- spin_unlock_irqrestore(&brgb->value_lock, flags);
- if(1 == brgb->suspend) {
- "Do NOT change brightness in suspend mode\n");
- return;
- }
- if(strcmp(brgb->cdev.name,sprd_leds_rgb_name[SPRD_LED_TYPE_R]) == 0 || \
- strcmp(brgb->cdev.name,sprd_leds_rgb_name[SPRD_LED_TYPE_G]) == 0 || \
- strcmp(brgb->cdev.name,sprd_leds_rgb_name[SPRD_LED_TYPE_B]) == 0)
- sprd_leds_rgb_work(brgb);
- else
- sprd_leds_bltc_work(brgb);
- }
在上述的写函数中又调用sprd_leds_bltc_work函数
9.sprd_leds_bltc_work的实现
- static void sprd_leds_rgb_work(struct sprd_leds_bltc_rgb *brgb)
- {
- long flags;
- mutex_lock(&brgb->mutex);
- spin_lock_irqsave(&brgb->value_lock, flags);
- if (brgb->value == LED_OFF) {
- spin_unlock_irqrestore(&brgb->value_lock, flags);
- sprd_leds_bltc_rgb_set_brightness(brgb);
- goto out;
- }
- spin_unlock_irqrestore(&brgb->value_lock, flags);
- sprd_leds_bltc_rgb_enable(brgb);
- "sprd_leds_bltc_rgb_work_for rgb!\n");
- out:
- mutex_unlock(&brgb->mutex);
- }
紧接着又调用sprd_leds_bltc_rgb_enable接口
10.sprd_leds_bltc_rgb_enable的实现
- static void sprd_leds_bltc_rgb_enable(struct sprd_leds_bltc_rgb *brgb)
- {
- sprd_bltc_rgb_init(brgb);
- if(strcmp(brgb->cdev.name,sprd_leds_rgb_name[SPRD_LED_TYPE_R]) == 0) {
- sci_adi_set(brgb->sprd_bltc_base_addr + BLTC_CTRL, (0x1<<0)|(0x1<<1));
- brgb->bltc_addr = brgb->sprd_bltc_base_addr + BLTC_R_PRESCL + BLTC_DUTY_OFFSET;
- sprd_leds_bltc_rgb_set_brightness(brgb);
- }
- if(strcmp(brgb->cdev.name,sprd_leds_rgb_name[SPRD_LED_TYPE_G]) == 0) {
- sci_adi_set(brgb->sprd_bltc_base_addr + BLTC_CTRL, (0x1<<4)|(0x1<<5));
- brgb->bltc_addr = brgb->sprd_bltc_base_addr + BLTC_G_PRESCL + BLTC_DUTY_OFFSET;
- sprd_leds_bltc_rgb_set_brightness(brgb);
- }
- if(strcmp(brgb->cdev.name,sprd_leds_rgb_name[SPRD_LED_TYPE_B]) == 0) {
- sci_adi_set(brgb->sprd_bltc_base_addr + BLTC_CTRL, (0x1<<8)|(0x1<<9));
- brgb->bltc_addr = brgb->sprd_bltc_base_addr + BLTC_B_PRESCL + BLTC_DUTY_OFFSET;
- sprd_leds_bltc_rgb_set_brightness(brgb);
- }
- .....
- "sprd_leds_bltc_rgb_enable\n");
- brgb->enable = 1;
- }
紧接着又调用sprd_leds_bltc_rgb_set_brightness
11.sprd_leds_bltc_rgb_set_brightness的实现
y
- static void sprd_leds_bltc_rgb_set_brightness(struct sprd_leds_bltc_rgb *brgb)
- {
- long brightness = brgb->value;
- long pwm_duty;
- pwm_duty = brightness;
- if(pwm_duty > 255)
- pwm_duty = 255;
- sci_adi_write(brgb->bltc_addr, (pwm_duty<<8)|PWM_MOD_COUNTER,0xffff);
- "reg:0x%1LX set_val:0x%08X brightness:%ld brightness_level:%ld(0~15)\n", \
- brgb->bltc_addr, sprd_leds_bltc_rgb_read(brgb->bltc_addr),brightness, pwm_duty);
- }
这里使用最关键的一步使用 sci_adi_write 将ISINK 寄存器赋值,直接调整亮度
三、总结
本文着重讲解关机充电下,手机指示灯工作流程。整个流程非常清晰,只需要基本的IO基础知识即可,由于是在关机模式下,adbd 服务没有开启,所以我们不能直接查看节点的创建情况。调试过程中我们只需要通过跟踪串口log,追踪整个charge实现流程是否走到,也就是说能够程序走到上述的第6步,如果走到此处led仍然不能亮,那就要检查驱动或者硬件有无问题了。
PS:本文侧重关机充电,当然也牵扯到部分Kernel 部分,至于kernel部分详细实现后面开机充电会详述说明。