一.kafka使用
这里我使用的dokcer做的集群
wget http://mirror.bit.edu.cn/apache/kafka/1.1.0/kafka_2.11-1.1.0.tgz
进入到config目录
cd /usr/local/hadoop/kafka_2.11-1.1.0/config
主要关注:server.properties
有很多文件,这里可以发现有Zookeeper文件,我们可以根据Kafka内带的zk集群来启动,但是建议使用独立的zk集群
修改配置文件:
broker.id=0 #当前机器在集群中的唯一标识,和zookeeper的myid性质一样
port=19092 #当前kafka对外提供服务的端口默认是9092
host.name=192.168.7.100 #这个参数默认是关闭的,在0.8.1有个bug,DNS解析问题,失败率的问题。
num.network.threads=3 #这个是borker进行网络处理的线程数
num.io.threads=8 #这个是borker进行I/O处理的线程数
log.dirs=/opt/kafka/kafkalogs/ #消息存放的目录,这个目录可以配置为“,”逗号分割的表达式,上面的num.io.threads要大于这个目录的个数这个目录,如果配置多个目录,新创建的topic他把消息持久化的地方是,当前以逗号分割的目录中,那个分区数最少就放那一个
socket.send.buffer.bytes=102400 #发送缓冲区buffer大小,数据不是一下子就发送的,先回存储到缓冲区了到达一定的大小后在发送,能提高性能
socket.receive.buffer.bytes=102400 #kafka接收缓冲区大小,当数据到达一定大小后在序列化到磁盘
socket.request.max.bytes=104857600 #这个参数是向kafka请求消息或者向kafka发送消息的请请求的最大数,这个值不能超过java的堆栈大小
num.partitions=1 #默认的分区数,一个topic默认1个分区数
log.retention.hours=168 #默认消息的最大持久化时间,168小时,7天
message.max.byte=5242880 #消息保存的最大值5M
default.replication.factor=2 #kafka保存消息的副本数,如果一个副本失效了,另一个还可以继续提供服务
replica.fetch.max.bytes=5242880 #取消息的最大直接数
log.segment.bytes=1073741824 #这个参数是:因为kafka的消息是以追加的形式落地到文件,当超过这个值的时候,kafka会新起一个文件
log.retention.check.interval.ms=300000 #每隔300000毫秒去检查上面配置的log失效时间(log.retention.hours=168 ),到目录查看是否有过期的消息如果有,删除
log.cleaner.enable=false #是否启用log压缩,一般不用启用,启用的话可以提高性能
zookeeper.connect=172.17.0.2:2181,172.17.0.3:2181,172.17.0.4:2181 #设置zookeeper的连接端口
启动服务
#从后台启动Kafka集群(3台都需要启动)
cd usr/local/hadoop/kafka_2.11-1.1.0/bin
./kafka-server-start.sh -daemon ../config/server.properties
#执行命令jps
20348 Jps
4233 QuorumPeerMain
18991 Kafka
二.kafka无消息丢失配置
Kafka到底会不会丢数据(data loss)? 通常不会,但有些情况下的确有可能会发生。下面的参数配置及Best practice列表可以较好地保证数据的持久性(当然是trade-off,牺牲了吞吐量)。笔者会在该列表之后对列表中的每一项进行讨论,有兴趣的同学可以看下后面的分析。
block.on.buffer.full = true
acks = all
retries = MAX_VALUE
max.in.flight.requests.per.connection = 1
使用KafkaProducer.send(record, callback)
callback逻辑中显式关闭producer:close(0)
unclean.leader.election.enable=false
replication.factor = 3
min.insync.replicas = 2
replication.factor > min.insync.replicas
enable.auto.commit=false
消息处理完成之后再提交位移
给出列表之后,我们从两个方面来探讨一下数据为什么会丢失:
1. Producer端
目前比较新版本的Kafka正式替换了Scala版本的old producer,使用了由Java重写的producer。新版本的producer采用异步发送机制。KafkaProducer.send(ProducerRecord)方法仅仅是把这条消息放入一个缓存中(即RecordAccumulator,本质上使用了队列来缓存记录),同时后台的IO线程会不断扫描该缓存区,将满足条件的消息封装到某个batch中然后发送出去。显然,这个过程中就有一个数据丢失的窗口:若IO线程发送之前client端挂掉了,累积在accumulator中的数据的确有可能会丢失。
Producer的另一个问题是消息的乱序问题。假设客户端代码依次执行下面的语句将两条消息发到相同的分区
producer.send(record1);
producer.send(record2);
如果此时由于某些原因(比如瞬时的网络抖动)导致record1没有成功发送,同时Kafka又配置了重试机制和max.in.flight.requests.per.connection大于1(默认值是5,本来就是大于1的),那么重试record1成功后,record1在分区中就在record2之后,从而造成消息的乱序。很多某些要求强顺序保证的场景是不允许出现这种情况的。
鉴于producer的这两个问题,我们应该如何规避呢??对于消息丢失的问题,很容易想到的一个方案就是:既然异步发送有可能丢失数据, 我改成同步发送总可以吧?比如这样:
producer.send(record).get();
这样当然是可以的,但是性能会很差,不建议这样使用。因此特意总结了一份配置列表。个人认为该配置清单应该能够比较好地规避producer端数据丢失情况的发生:(特此说明一下,软件配置的很多决策都是trade-off,下面的配置也不例外:应用了这些配置,你可能会发现你的producer/consumer 吞吐量会下降,这是正常的,因为你换取了更高的数据安全性)
- block.on.buffer.full = true 尽管该参数在0.9.0.0已经被标记为“deprecated”,但鉴于它的含义非常直观,所以这里还是显式设置它为true,使得producer将一直等待缓冲区直至其变为可用。否则如果producer生产速度过快耗尽了缓冲区,producer将抛出异常
- acks=all 很好理解,所有follower都响应了才认为消息提交成功,即"committed"
- retries = MAX 无限重试,直到你意识到出现了问题:)
- max.in.flight.requests.per.connection = 1 限制客户端在单个连接上能够发送的未响应请求的个数。设置此值是1表示kafka broker在响应请求之前client不能再向同一个broker发送请求。注意:设置此参数是为了避免消息乱序
- 使用KafkaProducer.send(record, callback)而不是send(record)方法 自定义回调逻辑处理消息发送失败
- callback逻辑中最好显式关闭producer:close(0) 注意:设置此参数是为了避免消息乱序
- unclean.leader.election.enable=false 关闭unclean leader选举,即不允许非ISR中的副本被选举为leader,以避免数据丢失
- replication.factor >= 3 这个完全是个人建议了,参考了Hadoop及业界通用的三备份原则
- min.insync.replicas > 1 消息至少要被写入到这么多副本才算成功,也是提升数据持久性的一个参数。与acks配合使用
- 保证replication.factor > min.insync.replicas 如果两者相等,当一个副本挂掉了分区也就没法正常工作了。通常设置replication.factor = min.insync.replicas + 1即可
2. Consumer端
consumer端丢失消息的情形比较简单:如果在消息处理完成前就提交了offset,那么就有可能造成数据的丢失。由于Kafka consumer默认是自动提交位移的,所以在后台提交位移前一定要保证消息被正常处理了,因此不建议采用很重的处理逻辑,如果处理耗时很长,则建议把逻辑放到另一个线程中去做。为了避免数据丢失,现给出两点建议:
- enable.auto.commit=false 关闭自动提交位移
- 在消息被完整处理之后再手动提交位移
二.kafka集成
1. pom.xml
<!--kafka-->
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-json</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
2. application.yml
#kafka相关配置
spring:
kafka:
bootstrap-servers: 192.168.10.20:9092,192.168.10.21:9092,192.168.10.22:9092
producer:
key-serializer: org.apache.kafka.common.serialization.StringSerializer
value-serializer: org.apache.kafka.common.serialization.StringSerializer
consumer:
key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
group-id: test
auto-offset-reset: earliest
public class Message {
private Integer id;
private String msg;
public Message() {
}
public Message(Integer id, String msg) {
this.id = id;
this.msg = msg;
}
public Integer getId() {
return id;
}
public void setId(Integer id) {
this.id = id;
}
public String getMsg() {
return msg;
}
public void setMsg(String msg) {
this.msg = msg;
}
@Override
public String toString() {
return "Message{" +
"id=" + id +
", msg='" + msg + '\'' +
'}';
}
}
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Component;
@Component
public class Producer {
private static Logger log = LoggerFactory.getLogger(Producer.class);
@Autowired
private KafkaTemplate kafkaTemplate;
public void send(String topic, Message message) {
kafkaTemplate.send(topic, message);
log.info("Producer->topic:{}, message:{}", topic, message);
}
}
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
@Component
public class Consumer {
private static Logger log = LoggerFactory.getLogger(Consumer.class);
@KafkaListener(topics = "test_topic")
public void receive(ConsumerRecord<String, Message> consumerRecord) {
log.info("Consumer->topic:{}, value:{}", consumerRecord.topic(), consumerRecord.value());
}
}
- 通过KafkaTemplate模板类发送数据。kafkaTemplate.send(String topic, V data),第一个入参是主题,第二个入参是发送的对象。通过@KafkaListener注解配置用户监听topics。
@RestController
@RequestMapping("/v1/kafka")
public class TestKafka {
@Autowired
private Producer producer;
@RequestMapping(value = "/test", method = RequestMethod.GET)
public void skuWmTypes() throws InterruptedException {
for (int i = 1; i < 10; i++) {
producer.send("test_topic", new Message(i, "test topic message " + i));
Thread.sleep(2000);
}
}
}