滤波器是图像处理和计算机视觉中最基础的运算,可以实现很多种不同的图像变换。

中值滤波

中值滤波(Median filter)是一种典型的非线性滤波技术,基本思想是用像素点邻域灰度值的中值来代替该像素点的灰度值,该方法在去除脉冲噪声、椒盐噪声的同时又能保留图像边缘细节,.

中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,其基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点,对于斑点噪声(speckle noise)和椒盐噪声(salt-and-pepper noise)来说尤其有用,因为它不依赖于邻域内那些与典型值差别很大的值。中值滤波器在处理连续图像窗函数时与线性滤波器的工作方式类似,但滤波过程却不再是加权运算。

中值滤波在一定的条件下可以克服常见线性滤波器如最小均方滤波、方框滤波器、均值滤波等带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声非常有效,也常用于保护边缘信息, 保存边缘的特性使它在不希望出现边缘模糊的场合也很有用,是非常经典的平滑噪声处理方法。

中值滤波器与均值滤波器比较的 优势 :在均值滤波器中,由于噪声成分被放入平均计算中,所以输出受到了噪声的影响,但是在中值滤波器中,由于噪声成分很难选上,所以几乎不会影响到输出。因此同样用3x3区域进行处理,中值滤波消除的噪声能力更胜一筹。中值滤波无论是在消除噪声还是保存边缘方面都是一个不错的方法。  

中值滤波器与均值滤波器比较的 劣势 :中值滤波花费的时间是均值滤波的5倍以上。

源代码 “\opencv\sources\modules\imgproc\src\smooth.cpp”的第1653行开始

双边滤波

双边滤波(Bilateral filter)是一种非线性的滤波方法,是结合图像的空间邻近度和像素值相似度的一种折衷处理,同时考虑空域信息和灰度相似性,达到保边去噪的目的。具有简单、非迭代、局部的特点。

双边滤波器的好处是可以做边缘保存(edge preserving),一般过去用的维纳滤波或者高斯滤波去降噪,都会较明显地模糊边缘,对于高频细节的保护效果并不明显。双边滤波器顾名思义比高斯滤波多了一个高斯方差sigma-d,它是基于空间分布的高斯滤波函数,所以在边缘附近,离的较远的像素不会太多影响到边缘上的像素值,这样就保证了边缘附近像素值的保存。但是由于保存了过多的高频信息,对于彩×××像里的高频噪声,双边滤波器不能够干净的滤掉,只能够对于低频信息进行较好的滤波。

在双边滤波器中,输出像素的值依赖于邻域像素值的加权值组合:

图像处理 - 滤波器  Filter_filter滤波器

而加权系数w(i,j,k,l)取决于定义域核和值域核的乘积。

其中定义域核表示如下(如图):

图像处理 - 滤波器  Filter_filter滤波器_02

定义域滤波 对应图示:

图像处理 - 滤波器  Filter_filter滤波器_03

值域核表示为:

图像处理 - 滤波器  Filter_filter滤波器_04

值域滤波:

图像处理 - 滤波器  Filter_filter滤波器_05

两者相乘后,就会产生依赖于数据的双边滤波权重函数:

图像处理 - 滤波器  Filter_filter滤波器_06


bilateralFilter函数的源码 也比较冗长,在“D:\Program Files\opencv\sources\modules\imgproc\src\smooth.cpp”源码文件中。