本节书摘来自华章出版社《多核与GPU编程:工具、方法及实践》一书中的第1章,第1.1节, 作 者 Multicore and GPU Programming: An Integrated Approach[阿联酋]杰拉西莫斯·巴拉斯(Gerassimos Barlas) 著,张云泉 贾海鹏 李士刚 袁良 等译

第1章
概  述

本章目标:
了解计算机(计算机体系架构)设计的发展趋势以及该趋势如何影响软件开发。

学习基于Flynn分类的计算机分类方法。

学习评估多核/并行程序性能即加速比和效率的必备工具。

学习测量和报告程序性能的正确实验方法。

学习Amdahl和Gustafson-Barsis定律,并使用这两个定律预测并行程序性能。

1.1 多核计算机时代

在过去的40年中,数字计算机已经成为技术和科学发展的基石。遵循20世纪70年代摩尔(Gordon E. Moore)发现的摩尔定律,计算机的信息处理速度(性能)呈指数提高,这使得我们可以处理更加复杂的问题。

令人惊讶的是,即使在今天,摩尔定律也描述了行业的发展趋势。然而,在大众科学中有一个被忽视的问题需要澄清一下:摩尔定律描述的是晶体管数量呈指数级增长,而不是运行性能。图1-1描述了摩尔定律。

这是一个非常容易犯的错误,因为晶体管数目的增加伴随着运行频率(时钟频率)的提高。但是,时钟频率的增加会导致产热的增加。为此,芯片设计者不断降低电子电路的操作电压(目前的运行电压为1.29V)。然而,这并不足以解决这个问题。因此,时钟频率的发展不可避免地陷入停滞。在过去10年中,主流时钟频率维持在2~4GHz之间。




多核能加速 android 源码的编译速度吗 多核与gpu编程_开发工具



所以,获取更高计算能力的唯一途径就是在芯片内部集成更多的计算逻辑和计算核心。随着AMD于2015年推出第一款双核芯片(AMD 64 X2),更多的多核芯片也被不断推出。这其中不仅包括拥有大量计算核心的同构芯片(如 64核Tilera,TILE64),而且包括异构芯片,如Cell BE,它采用Power架构,并用于Sony Playstation 3。

这些芯片是多路(multisocket)平台(即,20世纪90年代中后期出现的搭载多个CPU的计算机)的自然演化。然而,GPGPU(通用计算图形处理单元)的出现是一个意外。GPGPU是指利用GPU (Graphical Processing Unit,图形处理器)进行通用计算。虽然单个GPU核与同时代的CPU核相比性能很差,但是GPU采用了大规模并行架构,拥有通过高带宽、高性能RAM相连的成百上千个计算核心。因此,同CPU相比,GPU的性能以数量级提升。

在能源日益紧张的今天,GPGPU还有一个额外优势:它提供了卓越的GFlop/W的性能。换句话说,可以使用同样的能源进行更多的计算。这在服务器和云基础设施领域是非常重要的。在这些领域中,CPU在其运行寿命中消耗的能源费用要比其购买价格高得多。

GPGPU技术被认为是颠覆性的,在很多层面上确实是这样:它为使用现代单核甚至多核CPU技术仍然无法解决的问题提供了解决方案。但是,GPGPU需要新的软件设计、开发工具和技术。据预测,在不久的将来,需要数百万个线程来开发下一代高性能计算硬件的性能。

然而,所有这些多核芯片带来的性能提升都不是免费的:需要对按部就班执行的传统算法进行重新设计。