简单的目录
- 1.概述
- 2.网页分析
- 2.1.html页面源数据
- 2.2.json源数据
- 3.数据请求
- 4.数据解析
- 4.1.html数据解析
- 4.1.1.bs4
- 4.1.2.xpath
- 4.2.json数据解析
- 5.数据保存
- 5.1.存储图片类数据
- 5.2.文本数据表单存储
- 6.你也来玩一玩
- 6.1.英雄新皮肤数
- 6.2.新增皮肤上线时间
- 6.3.王者英雄产能
- 7.其他
1.概述
《王者荣耀》上线至今5个年头了,作为这些年国内最热门的手游(没有之一),除了带来游戏娱乐之外,我们在这五周年之际,试着从他们的官网找点乐趣,学习一下Python爬虫的一些简单基础操作。
本篇将主要介绍简单的Python爬虫,包括网页分析、数据请求、数据解析和数据保存,适用于基本不带反爬的一些网站,旨在进行学习交流,请勿用作任何商业非法用途。
网页分析其实就是打开你需要请求数据的网页,然后F12看下这个网页源数据长啥样(如果你会web知识会更好处理,不过我没系统学过,操作多了就熟悉一点);
数据请求我们用人见人爱的requests库,关于该库的更详细用法大家可以去查询该链接了解(https://requests.readthedocs.io/zh_CN/latest/);
数据解析一般视请求的数据格式而定,如果请求的数据是html格式,我将介绍bs4和xpath两种方式进行解析,若请求的数据是json格式,我将介绍json和eval两种方式进行解析;
数据保存这里分为两种情况,如果是图片类会用到open和write函数方法,若是文本类的我会用到pandas的to_excel保存为表单格式。
2.网页分析
我们在概述说提到请求的数据会有html格式或者json格式,两种情况下其实对应的真实请求地址是有差异的,怎么判断呢,作为初学者我的个人经验就是去试试,本章节两种尝试方案都会介绍,大家在实操中视情况而选吧!
2.1.html页面源数据
以下面这张英雄列表页面为例,按住“F12”,然后点一下开发者模式中左上角的那个有鼠标箭头的图标,再在左侧选取你需要的数据区域,在开发者模式区域就会出现这个数据区域的数据信息,比如这里的“详情页地址”、“头像图片地址”和“名称”,我们需要的也算这些信息,所以可以直接请求该链接即可。
2.2.json源数据
对于局内道具列表数据,我们发现上述方案无法获取,那么这种情况下我们可以选择开发者模式中的Network——>XHR,然后刷新页面,在name里找啊找,一般就能到了某个数据是我们需要的。
点Preview发现里面正是我们需要的源数据,然后在Headers里可以找到请求到该源数据的真实链接地址,这里数据请求方式为get,我们下一节会介绍。
3.数据请求
我们提到这里用 requests 库进行数据请求,requests 有两种比较常用的请求方式:post和get。刚好这里我们用的到就是get一种即可,另外请求的时候可带很多参数,比如请求头、cookie等等,具体大家查概述中链接文档了解吧。
简单的例子:
import requests
#英雄列表页地址
url = 'https://pvp.qq.com/web201605/herolist.shtml'
resp = requests.get(url)
#设置解码方式(由于请求的数据中文乱码,这里进行解码)
resp.encoding=resp.apparent_encoding
import requests
#局内道具详情页地址
url = 'https://pvp.qq.com/web201605/js/item.json'
resp = requests.get(url)
#设置解码方式(由于请求的数据中文乱码,这里进行解码)
resp.encoding=resp.apparent_encoding
4.数据解析
对于不同的源数据解析方式不同,html数据解析这里介绍两种比较常用的入门级方式bs4和xpath,对于json数据其实相对来说更好处理,这里介绍两种简单的方式利用json和eval。
4.1.html数据解析
4.1.1.bs4
Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库,它能够通过你喜欢的转换器实现惯用的文档导航、查找、修改文档的方式。
更多操作详情大家可以去看(https://beautifulsoup.readthedocs.io/zh_CN/v4.4.0/)~
看html数据结构,我们可以找到想要的数据在ul节点,满足class="herolist clearfix"下的全部li节点中。对于bs4来说,可以用find_all方法去定位。(更多解释见代码注释哦)
# bs4 解析
from bs4 import BeautifulSoup
# 先将请求到的数据转化为BeautifulSoup对象
soup = BeautifulSoup(resp.text,'html.parser')
# 定位全部的满足 class = "herolist clearfix",由于class是关键字所以这里用class_
# 返回结果只有1个的列表,因此取索引0
ul = soup.find_all('ul', class_="herolist clearfix")[0]
# 定位 ul 下面全部的 li,li中藏着我们需要的数据信息
lis = ul.find_all('li')
# 创建一个空表用于存储数据
herolists = []
# 遍历全部的li
for li in lis:
# 创建空字典,用于存储 英雄列表信息
herolist = {}
# get_text() 获取节点下面的文案部分
herolist['英雄名称'] = li.get_text()
# get() 获取 具体值,英雄详情页地址在 li节点的子节点a下面
herolist['英雄详情页'] = li.find('a').get('href')
herolist['英雄头像'] = li.find('a').find('img').get('src')
herolists.append(herolist)
4.1.2.xpath
XPath 是一门在 XML 文档中查找信息的语言,可用来在 XML 文档中对元素和属性进行遍历。更多语法操作可以查看(https://www.w3school.com.cn/xpath/xpath_syntax.asp
)。
由于本质过程上和bs4差不多,只是语法函数操作不太同,这里不做详细介绍,直接看代码了解下先。
# xpath 解析
from lxml import etree
html = etree.HTML(resp.text)
html_ul = html.xpath('//ul[@class="herolist clearfix"]')[0]
html_lis = html_ul.xpath('./li')
herolists = []
for html_li in html_lis:
herolist = {}
herolist['英雄名称'] = html_li.xpath('./a/text()')[0]
herolist['英雄详情页'] = html_li.xpath('./a/@href')[0]
herolist['英雄头像'] = html_li.xpath('./a/img/@src')[0]
herolists.append(herolist)
4.2.json数据解析
在请求的数据是json格式时,直接查看数据类型发现是str,如下:
我们可采用json.loads()和eval方法将其转化为列表的形式,该列表和上面html数据解析后的结果格式一样。
import json
js = resp.text
# json.loads() 处理
li = json.loads(js)
# 直接 eval() 处理
lis = eval(js)
5.数据保存
对于图片类数据,请求图片数据然后写入本地保存;对于文本数据表单,转化为dataframe类型存为excel文件(需要用到pandas库)。
5.1.存储图片类数据
我们在英雄列表中有英雄头像数据,这里演示将英雄头像数据存入本地。
# 遍历数据解析中 英雄列表
for li in herolists:
# 获取英雄头像网页地址
# 如'//game.gtimg.cn/images/yxzj/img201606/heroimg/506/506.jpg'
head_url = li['英雄头像']
# 组合 https:
url = f'https:{head_url}'
# 获取该英雄名称,用于赋值给图片文件名称
head_name = li['英雄名称']
# 请求图片数据
head_data = requests.get(url)
# 设置存储图片的全路径
head_path = f'D:\python\爬虫\王者荣耀\{head_name}.png'
# 打开空文件写入图片数据
open(head_path, 'wb').write(head_data.content)
5.2.文本数据表单存储
import pandas as pd
# 列表转化为dataframe类型
df = pd.DataFrame(li)
# 由于数据中存在一些网页符号,作为 菜鸟的我只会用replace简单替换
df['des1'] = df['des1'].str.replace('<br>',',').str.replace('<p>','').str.replace('</p>','')
df['des2'] = df['des2'].str.replace('<br>',',').str.replace('<p>','').str.replace('</p>','')
# 存为表格,页签取名为“装备数据信息list”
df.to_excel(r'D:\python\爬虫\王者荣耀\道具表单数据.xlsx',index=False,sheet_name='装备数据信息list')
6.你也来玩一玩
标题中我们提到王者荣耀五周年,有102个英雄和326个皮肤。其实,在英雄列表中我们抓取的html数据中只有93个,如何获取全部的呢?大家可以参考json数据请求的方式去找一找,如何根据相关数据的特点(比如英雄头像地址里变动的其实是 英雄的id,英雄详情页也是)。
大家可以看看新英雄和新皮肤,如何爬取相关数据试试。
6.1.英雄新皮肤数
上线五年,一共93个英雄新出过皮肤,其中貂蝉、花木兰和孙悟空新增皮肤最多,高达5个!!
在93个英雄中,大部分只新增过1个皮肤~
6.2.新增皮肤上线时间
从上线月份来看,1月是英雄上线高峰,这个和1月大部分为春节月有关,毕竟这款产品春节也是最赚钱的。
从上线年份来看,2015年其实10月底产品才上线,所以整体新增皮肤不多,16及17年游戏高速增长期吧,团队产能并没有明显提高?所以在18年之后,团队大了,新增皮肤蹭的飞涨!
6.3.王者英雄产能
2015年10月28日王者首发时,有33个英雄,大家熟悉的亚瑟、项羽、安琪拉等都是第一批。截止到现在,5年时间内新增英雄69个。
从上线月份来看,2、8、11和1月份是新英雄出的最多的,为啥啊?
从上线年份来看,2015年上线2个月内上线7个新英雄,很快,毕竟存了很多量嘛。随后可以看到2016年新英雄产出是高峰,随后逐年降低的趋势,为啥?毕竟英雄设计是非常非常费脑袋的啊!!