太弱。。。
too weak。。
割点我都还要看书和看题解来写。。果然是写不出么。。
割点就那样求,然后分量直接这个节点有多少子树就有子树个数+1个分量。还要注意root的特判。。sigh。。就是崩这里了。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; }
const int N=2005;
int ihead[N], cnt, rt, iscut[N], FF[N], LL[N], fa[N], tot;
struct ED { int to, next; }e[N*N];
void add(int u, int v) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v;
e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u;
}
void tarjan(int u, int fa) {
FF[u]=LL[u]=++tot;
int child=0;
for(int i=ihead[u]; i; i=e[i].next) {
int v=e[i].to;
if(!FF[v]) {
tarjan(v, u);
++child;
if(LL[v]>=FF[u]) ++iscut[u]; //dbg(iscut[u]); dbg(u);
LL[u]=min(LL[v], LL[u]);
}
else if(FF[v]<FF[u] && fa!=v) LL[u]=min(LL[u], FF[v]);
}
if(child==1 && fa==-1) iscut[u]=0;
else if(child>1 && fa==-1) iscut[u]=child-1; //特判
}
int main() {
int u, v, cs=0;
while(1) {
u=getint(); if(u==0) break;
v=getint();
CC(ihead, 0); CC(iscut, 0); cnt=tot=0; CC(FF, 0); CC(LL, 0);
++cs;
add(u, v); rt=max(rt, v);
while(1) {
u=getint(); if(u==0) break;
v=getint();
add(u, v); rt=max(rt, v);
}
for1(i, 1, rt) if(ihead[i] && !FF[i]) tarjan(i, -1);
// for1(i, 1, rt) if(hav[i] && iscut[i]) printf("%d\n", i);
int flag=0;
printf("Network #%d\n", cs);
for1(i, 1, rt) if(iscut[i]) printf(" SPF node %d leaves %d subnets\n", i, iscut[i]+1), flag=1;
if(!flag) puts(" No SPF nodes");
puts("");
}
return 0;
}
Description
Node 3 is therefore a Single Point of Failure (SPF) for this network. Strictly, an SPF will be defined as any node that, if unavailable, would prevent at least one pair of available nodes from being able to communicate on what was previously a fully connected network. Note that the network on the right has no such node; there is no SPF in the network. At least two machines must fail before there are any pairs of available nodes which cannot communicate.

Input
Output
The first network in the file should be identified as "Network #1", the second as "Network #2", etc. For each SPF node, output a line, formatted as shown in the examples below, that identifies the node and the number of fully connected subnets that remain when that node fails. If the network has no SPF nodes, simply output the text "No SPF nodes" instead of a list of SPF nodes.
Sample Input
1 2 5 4 3 1 3 2 3 4 3 5 0 1 2 2 3 3 4 4 5 5 1 0 1 2 2 3 3 4 4 6 6 3 2 5 5 1 0 0
Sample Output
Network #1 SPF node 3 leaves 2 subnets Network #2 No SPF nodes Network #3 SPF node 2 leaves 2 subnets SPF node 3 leaves 2 subnets
Source
















