题目大意:输入两个整数m、n,分别表示道路数和村庄数。在接下来的m行中,每行有3个整数begin end weight,分别表示道路的起始村庄、结束村庄,以及修建这条道路

所需要的费用。


解题思路:最小生成树

1)题目中所指的所谓的"数据不足"其实就是指,还有孤立节点(除了根节点)。只要对其进行判断即可

for( i = 1 ; i <= n ; ++i){
			if(father[i] == i){
				count++;
			}
		}

		if(count == 1){
			printf("%d\n",sum);
		}



2)kruscal算法的实现如下:

int kruscal(){
	int i;
	int sum = 0;

	//初始化
	for( i = 1 ; i<= n ; ++i){
		father[i] = i;
	}

	//合并
	for( i = 1 ; i <= n ; ++i){
		int fx = find(e[i].begin);
		int fy = find(e[i].end);

		if(fx != fy){
			father[fx] = fy;
			sum += e[i].weight;
		}
	}

	return sum;
}




代码如下:

/*
 * 1863_1.cpp
 *
 *  Created on: 2013年8月26日
 *      Author: Administrator
 */
#include <iostream>
using namespace std;

struct edge{
	int begin;
	int end;
	int weight;
};

const int maxn = 110;
edge e[maxn*maxn];
int father[maxn];
int n;

int find(int a){
	if( a == father[a]){
		return a;
	}

	father[a] = find(father[a]);
	return father[a];
}

int kruscal(){
	int i;
	int sum = 0;

	//初始化
	for( i = 1 ; i<= n ; ++i){
		father[i] = i;
	}

	//合并
	for( i = 1 ; i <= n ; ++i){
		int fx = find(e[i].begin);
		int fy = find(e[i].end);

		if(fx != fy){
			father[fx] = fy;
			sum += e[i].weight;
		}
	}

	return sum;
}

bool compare(const edge& a , const edge& b){
	return a.weight < b.weight;
}
int main(){
	int m;
	while(scanf("%d%d",&m,&n)!=EOF,m){
		int i;
		memset(father,0,sizeof(father));

		for( i = 1 ; i <= maxn*maxn ; ++i){
			e[i].begin = -1;
			e[i].end = -1;
			e[i].weight = 0;
		}

		for(i = 1 ; i <= m ; ++i){
			scanf("%d%d%d",&e[i].begin,&e[i].end,&e[i].weight);
		}

		sort(e + 1, e + m + 1 , compare );

		int sum = kruscal();
		int count = 0;

		for( i = 1 ; i <= n ; ++i){
			if(father[i] == i){
				count++;
			}
		}

		if(count == 1){
			printf("%d\n",sum);
		}else{
			printf("?\n");
		}
	}
}