我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list、tuple、dict、set、str等; 一类是generator,包括生成器和带yield的generator function。 这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。 可以使用isinstance()判断一个对象是否是Iterable对象。

from collections import Iterable isinstance([], Iterable) True

isinstance({}, Iterable) True

isinstance('abc', Iterable) True

isinstance((x for x in range(10)), Iterable) True

isinstance(100, Iterable) False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。 可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。 可以使用isinstance()判断一个对象是否是Iterator对象:

from collections import Iterator isinstance((x for x in range(10)), Iterator) True

isinstance([], Iterator) False

isinstance({}, Iterator) False

isinstance('abc', Iterator) False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。 把list、dict、str等Iterable变成Iterator可以使用iter()函数: 你可能会问,为什么list、dict、str等数据类型不是Iterator?

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。 Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。 总结: 凡是可作用于for循环的对象都是Iterable类型; 凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列; 集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

a = iter([1,2,3,4,5])
while True:
    try:
        # 获得下一个值:
        print(a.__next__())
    except StopIteration:
        # 遇到StopIteration就退出循环
        break

#内部实现都是一样的
for x in [1, 2, 3, 4, 5]:
    pass

参考源码: do_iter.py

文章转载自:迭代器