TensorBoard是Tensorflow自带的可视化工具,是一个web应用程序套件;

环境:ubuntu1804,python3.6, Tensorflow1.14

创建名为 TensorBoard_demo.py文件,代码如下:

# -*- coding: UTF-8 -*-

# 引入tensorflow
import tensorflow as tf

# 构造图(Graph)的结构
# 用一个线性方程的例子 y = W * x + b
W = tf.Variable(2.0, dtype=tf.float32, name="Weight")  # 权重
b = tf.Variable(1.0, dtype=tf.float32, name="Bias")  # 偏差
x = tf.placeholder(dtype=tf.float32, name="Input")  # 输入
with tf.name_scope("Output"):      # 输出的命名空间
    y = W * x + b    # 输出

# const = tf.constant(2.0)  # 不需要初始化

# 定义保存日志的路径
path = "./log"

# 创建用于初始化所有变量(Variable)的操作
# 如果定义了变量,但没有初始化的操作,会报错
init = tf.global_variables_initializer()

# 创建 Session(会话)
with tf.Session() as sess:
    sess.run(init)  # 初始化变量
    writer = tf.summary.FileWriter(path, sess.graph)
    result = sess.run(y, {x: 3.0})  # 为 x 赋值 3
    print("y = W * x + b,值为 {}".format(result))  # 打印 y = W * x + b 的值,就是 7

运行: python tensorboard_demo.py 

(python3_tf1.14) gs@aigo:~/01_ai/02_mooc/TensorFlow_application_python/project/g2kx1i/1.TensorFlow_Exercises/3.Tensorboard$ 
(python3_tf1.14) gs@aigo:~/01_ai/02_mooc/TensorFlow_application_python/project/g2kx1i/1.TensorFlow_Exercises/3.Tensorboard$ python tensorboard_demo.py 

y = W * x + b,值为 7.0
(python3_tf1.14) gs@aigo:~/01_ai/02_mooc/TensorFlow_application_python/project/g2kx1i/1.TensorFlow_Exercises/3.Tensorboard$ 

此时会生成 log 文件

显示,使用命令:tensorboard --logdir=log

(python3_tf1.14) gs@aigo:~/01_ai/02_mooc/TensorFlow_application_python/project/g2kx1i/1.TensorFlow_Exercises/3.Tensorboard$ ls
log  __pycache__  tensorboard_demo.py
(python3_tf1.14) gs@aigo:~/01_ai/02_mooc/TensorFlow_application_python/project/g2kx1i/1.TensorFlow_Exercises/3.Tensorboard$ tensorboard --logdir=log

运行:

TensorBoardc的学习及demo_ooc

 

TensorBoardc的学习及demo_ooc_02

备注:另一个非常好用的可视化工具: PlayGround。