在上述存在隐变量的问题中,不能直接通过极大似然估计求出模型中的参数,EM算法是一种解决存在隐含变量优化问题的有效方法。EM算法是期望极大(Expectation Maximization)算法的简称,EM算法是一种迭代型的算法,在每一次的迭代过程中,主要分为两步:即求期望(Expectation)步骤和最大化(Maximization)步骤。
三、EM算法推导的准备(图片来自参考文章1)
注:若函数
是凹函数,上述的符号相反。
3、数学期望
四、EM算法的求解过程 五、EM算法的收敛性保证 六、利用EM算法参数求解实例
Python代码
#coding:UTF-8
'''
Created on 2015年6月7日
@author: zhaozhiyong
'''
from __future__ import division
from numpy import *
import math as mt
#首先生成一些用于测试的样本
#指定两个高斯分布的参数,这两个高斯分布的方差相同
sigma = 6
miu_1 = 40
miu_2 = 20
#随机均匀选择两个高斯分布,用于生成样本值
N = 1000
X = zeros((1, N))
for i in xrange(N):
if random.random() > 0.5:#使用的是numpy模块中的random
X[0, i] = random.randn() * sigma + miu_1
else:
X[0, i] = random.randn() * sigma + miu_2
#上述步骤已经生成样本
#对生成的样本,使用EM算法计算其均值miu
#取miu的初始值
k = 2
miu = random.random((1, k))
#miu = mat([40.0, 20.0])
Expectations = zeros((N, k))
for step in xrange(1000):#设置迭代次数
#步骤1,计算期望
for i in xrange(N):
#计算分母
denominator = 0
for j in xrange(k):
denominator = denominator + mt.exp(-1 / (2 * sigma ** 2) * (X[0, i] - miu[0, j]) ** 2)
#计算分子
for j in xrange(k):
numerator = mt.exp(-1 / (2 * sigma ** 2) * (X[0, i] - miu[0, j]) ** 2)
Expectations[i, j] = numerator / denominator
#步骤2,求期望的最大
#oldMiu = miu
oldMiu = zeros((1, k))
for j in xrange(k):
oldMiu[0, j] = miu[0, j]
numerator = 0
denominator = 0
for i in xrange(N):
numerator = numerator + Expectations[i, j] * X[0, i]
denominator = denominator + Expectations[i, j]
miu[0, j] = numerator / denominator
#判断是否满足要求
epsilon = 0.0001
if sum(abs(miu - oldMiu)) < epsilon:
break
print step
print miu
print miu
最终结果
[[ 40.49487592 19.96497512]]