概念

凸包(Convex Hull)是一个计算几何(图形学)中的概念。用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有点的。严谨的定义和相关概念参见维基百科:凸包

这个算法是由数学大师葛立恒(Graham)发明的,他曾经是美国数学学会(AMS)主席、AT&T首席科学家以及国际杂技师协会(IJA)主席。(太汗了,这位大牛还会玩杂技~)

 

问题

给定平面上的二维点集,求解其凸包。

 

过程

1. 在所有点中选取y坐标最小的一点H,当作基点。如果存在多个点的y坐标都为最小值,则选取x坐标最小的一点。坐标相同的点应排除。然后按照其它各点p和基点构成的向量<H,p>与x轴的夹角进行排序,夹角由大至小进行顺时针扫描,反之则进行逆时针扫描。实现中无需求得夹角,只需根据向量的内积公式求出向量的模即可。以下图为例,基点为H,根据夹角由小至大排序后依次为H,K,C,D,L,F,G,E,I,B,A,J。下面进行逆时针扫描。

 


Graham

 

2. 线段<H, K>一定在凸包上,接着加入C。假设线段<K, C>也在凸包上,因为就H,K,C三点而言,它们的凸包就是由此三点所组成。但是接下来加入D时会发现,线段<K, D>才会在凸包上,所以将线段<K, C>排除,C点不可能是凸包。

3. 即当加入一点时,必须考虑到前面的线段是否会出现在凸包上。从基点开始,凸包上每条相临的线段的旋转方向应该一致,并与扫描的方向相反。如果发现新加的点使得新线段与上线段的旋转方向发生变化,则可判定上一点必然不在凸包上。实现时可用向量叉积进行判断,设新加入的点为pn + 1,上一点为pn,再上一点为pn - 1。顺时针扫描时,如果向量<pn - 1, pn>与<pn, pn + 1>的叉积为正(逆时针扫描判断是否为负),则将上一点删除。删除过程需要回溯,将之前所有叉积符号相反的点都删除,然后将新点加入凸包。

 


Graham

 

在上图中,加入K点时,由于线段<H,K>相对于<H,C>为顺时针旋转,所以C点不在凸包上,应该删除,保留K点。接着加入D点,由于线段<K, D>相对<H, K>为逆时针旋转,故D点保留。按照上述步骤进行扫描,直到点集中所有的点都遍例完成,即得到凸包。

 

复杂度

这个算法可以直接在原数据上进行运算,因此空间复杂度为O(1)。但如果将凸包的结果存储到另一数组中,则可能在代码级别进行优化。由于在扫描凸包前要进行排序,因此时间复杂度至少为快速排序的O(nlgn)。后面的扫描过程复杂度为O(n),因此整个算法的复杂度为O(nlgn)。

 

C++/STL实现

#include <algorithm>        


         #include <iostream>        


         #include <vector>        


         #include <math.h>        


         using          namespace          std;        


         //二维点(或向量)结构体定义        


         #ifndef _WINDEF_        


         struct          POINT {          int          x;          int          y; };        


         #endif        


         typedef          vector<POINT> PTARRAY;        


         //判断两个点(或向量)是否相等        


         bool          operator==(         const          POINT &pt1,          const          POINT &pt2) {        


                  return          (pt1.x == pt2.x && pt1.y == pt2.y);        


         }        


         // 比较两个向量pt1和pt2分别与x轴向量(1, 0)的夹角        


         bool          CompareVector(         const          POINT &pt1,          const          POINT &pt2) {        


                  //求向量的模        


                  float          m1 =          sqrt         ((         float         )(pt1.x * pt1.x + pt1.y * pt1.y));        


                  float          m2 =          sqrt         ((         float         )(pt2.x * pt2.x + pt2.y * pt2.y));        


                  //两个向量分别与(1, 0)求内积        


                  float          v1 = pt1.x / m1, v2 = pt2.x / m2;        


                  return          (v1 > v2 || (v1 == v2 && m1 < m2));        


         }        


         //计算凸包        


         void          CalcConvexHull(PTARRAY &vecSrc) {        


                  //点集中至少应有3个点,才能构成多边形        


                  if          (vecSrc.size() < 3) {        


                  return         ;        


                  }        


                  //查找基点        


                  POINT ptBase = vecSrc.front();          //将第1个点预设为最小点        


                  for          (PTARRAY::iterator i = vecSrc.begin() + 1; i != vecSrc.end(); ++i) {        


                  //如果当前点的y值小于最小点,或y值相等,x值较小        


                  if          (i->y < ptBase.y || (i->y == ptBase.y && i->x > ptBase.x)) {        


                  //将当前点作为最小点        


                  ptBase = *i;        


                  }        


                  }        


                  //计算出各点与基点构成的向量        


                  for          (PTARRAY::iterator i = vecSrc.begin(); i != vecSrc.end();) {        


                  //排除与基点相同的点,避免后面的排序计算中出现除0错误        


                  if          (*i == ptBase) {        


                  i = vecSrc.erase(i);        


                  }        


                  else          {        


                  //方向由基点到目标点        


                  i->x -= ptBase.x, i->y -= ptBase.y;        


                  ++i;        


                  }        


                  }        


                  //按各向量与横坐标之间的夹角排序        


                  sort(vecSrc.begin(), vecSrc.end(), &CompareVector);        


                  //删除相同的向量        


                  vecSrc.erase(unique(vecSrc.begin(), vecSrc.end()), vecSrc.end());        


                  //计算得到首尾依次相联的向量        


                  for          (PTARRAY::reverse_iterator ri = vecSrc.rbegin();        


                  ri != vecSrc.rend() - 1; ++ri) {        


                  PTARRAY::reverse_iterator riNext = ri + 1;        


                  //向量三角形计算公式        


                  ri->x -= riNext->x, ri->y -= riNext->y;        


                  }        


                  //依次删除不在凸包上的向量        


                  for          (PTARRAY::iterator i = vecSrc.begin() + 1; i != vecSrc.end(); ++i) {        


                  //回溯删除旋转方向相反的向量,使用外积判断旋转方向        


                  for          (PTARRAY::iterator iLast = i - 1; iLast != vecSrc.begin();) {        


                  int          v1 = i->x * iLast->y, v2 = i->y * iLast->x;        


                  //如果叉积小于0,则无没有逆向旋转        


                  //如果叉积等于0,还需判断方向是否相逆        


                  if          (v1 < v2 || (v1 == v2 && i->x * iLast->x > 0 &&        


                  i->y * iLast->y > 0)) {        


                  break         ;        


                  }        


                  //删除前一个向量后,需更新当前向量,与前面的向量首尾相连        


                  //向量三角形计算公式        


                  i->x += iLast->x, i->y += iLast->y;        


                  iLast = (i = vecSrc.erase(iLast)) - 1;        


                  }        


                  }        


                  //将所有首尾相连的向量依次累加,换算成坐标        


                  vecSrc.front().x += ptBase.x, vecSrc.front().y += ptBase.y;        


                  for          (PTARRAY::iterator i = vecSrc.begin() + 1; i != vecSrc.end(); ++i) {        


                  i->x += (i - 1)->x, i->y += (i - 1)->y;        


                  }        


                  //添加基点,全部的凸包计算完成        


                  vecSrc.push_back(ptBase);        


         }        


                  


         int          main(         void         ) {        


                  int          nPtCnt = 100;          //生成的随机点数        


                  PTARRAY vecSrc, vecCH;        


                  for          (         int          i = 0; i < nPtCnt; ++i) {        


                  POINT ptIn = {          rand         () % 20,          rand         () % 20 };        


                  vecSrc.push_back(ptIn);        


                  cout << ptIn.x <<          ", "          << ptIn.y << endl;        


                  }        


                  CalcConvexHull(vecSrc);        


                  cout <<          "\nConvex Hull:\n"         ;        


                  for          (PTARRAY::iterator i = vecSrc.begin(); i != vecSrc.end(); ++i) {        


                  cout << i->x <<          ", "          << i->y << endl;        


                  }        


                  return          0;        


         }