class _FunctionBase(object):
# no doc
@classmethod
def apply(cls, *args, **kwargs): # real signature unknown
pass
def register_hook(self, *args, **kwargs): # real signature unknown
pass
def _do_backward(self, *args, **kwargs): # real signature unknown
pass
def _do_forward(self, *args, **kwargs): # real signature unknown
pass
def _register_hook_dict(self, *args, **kwargs): # real signature unknown
pass
def __init__(self, *args, **kwargs): # real signature unknown
pass
@staticmethod # known case of __new__
def __new__(*args, **kwargs): # real signature unknown
""" Create and return a new object. See help(type) for accurate signature. """
pass
dirty_tensors = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
metadata = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
needs_input_grad = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
next_functions = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
non_differentiable = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
requires_grad = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
saved_tensors = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
saved_variables = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
to_save = property(lambda self: object(), lambda self, v: None, lambda self: None) # default