这是我看到的人家写的关于soft max和svm的区别,写的挺好的就先借用了

SVM

支持向量机和后面的 Softmax 分类器都是线性模型,这里只是损失函数不同罢了。阅读文档 Linear classification: Support Vector Machine, Softmax 大概就知道什么线性模型了。

xi 后,对第 j 个 类别的评分是:


sj=f(xi,W)j


如果是 Multiclass SVM loss,具体对第  i  个样本的损失为:

Li=∑j≠yimax(0,sj−syi+Δ)


当然,损失应该还包括正则化项,比较简单就略过了。


反向传播就比较麻烦一点,因为要用随机梯度下降的迭代方法,所以要计算梯度。读完文档 Optimization: Stochastic Gradient Descent,可以找到 SVM 的梯度是:


⎧⎩⎨⎪⎪⎪⎪⎪⎪∇wyiLi=∇wjLi=−⎛⎝∑j≠yi1(wTjxi−wTyixi+Δ>0)⎞⎠xi1(wTjxi−wTyixi+Δ>0)xij=yij≠yi


具体需要完成 svm.ipynb 中的代码,具体的理论推导得出的梯度计算是否正确,会有 gradient check 的数值计算方式来检查。

Softmax



Li=−log⎛⎝efyi∑jefj⎞⎠or equivalentlyLi=−fyi+log∑jefj




⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪∇wyiLi=∇wjLi=−xi+efyi∑jefjxiefj∑jefjxij=yij≠yi


在 Putting it together: Minimal Neural Network Case Study 里,构造了一个二维的数据集,用 Softmax 和 2-layer Neural Network 来做实验。完成 softmax.ipynb 的时候,计算 loss 和梯度都可以参考这篇笔记。

代码是官方的代码,没有在自己的编译器熵运行,如果是找可以运行的代码的同学请忽视了。

import numpy as np
from random import shuffle

def softmax_loss_naive(W, X, y, reg):
  """
  Softmax loss function, naive implementation (with loops)

  Inputs have dimension D, there are C classes, and we operate on minibatches
  of N examples.

  Inputs:
  - W: A numpy array of shape (D, C) containing weights.
  - X: A numpy array of shape (N, D) containing a minibatch of data.
  - y: A numpy array of shape (N,) containing training labels; y[i] = c means
    that X[i] has label c, where 0 <= c < C.
  - reg: (float) regularization strength

  Returns a tuple of:
  - loss as single float
  - gradient with respect to weights W; an array of same shape as W
  """
  # 将损失和梯度初始化为零。
  loss = 0.0
  dW = np.zeros_like(W)

  #############################################################################
  # TODO:使用显式循环计算softmax损失及其梯度。
  # 将损失和梯度存储在dW中 如果你不细心                                #
  # 在这里,很容易遇到数字不稳定性。不要忘记正则化!  f=w*x+b                                                                 #
  #############################################################################
  num_classes = W.shape[1]#矩阵
  num_train = X.shape[0]

  for i in xrange(num_train):
     scores = X[i].dot(W)
     shift_scores = scores - max(scores)
     loss_i = - shift_scores[y[i]] + np.log(sum(np.exp(shift_scores)))
     loss += loss_i
     for j in xrange(num_classes):
         softmax_output = np.exp(shift_scores[j])/sum(np.exp(shift_scores))
         if j == y[i]:
             dW[:,j] += (-1 + softmax_output) *X[i] 
         else: 
             dW[:,j] += softmax_output *X[i] 

  loss /= num_train 
  loss +=  0.5* reg * np.sum(W * W)
  dW = dW/num_train + reg* W 
  #pass
  #############################################################################
  #                          END OF YOUR CODE                                 #
  #############################################################################

  return loss, dW


def softmax_loss_vectorized(W, X, y, reg):
  """
  Softmax loss function, vectorized version.

  Inputs and outputs are the same as softmax_loss_naive.
  """
  # Initialize the loss and gradient to zero.
  loss = 0.0
  dW = np.zeros_like(W)

  #############################################################################
  # TODO: Compute the softmax loss and its gradient using no explicit loops.  #
  # Store the loss in loss and the gradient in dW. If you are not careful     #
  # here, it is easy to run into numeric instability. Don't forget the        #
  # regularization!                                                           #
  #############################################################################
  num_classes = W.shape[1]
  num_train = X.shape[0]
  scores = X.dot(W)
  shift_scores = scores - np.max(scores, axis = 1).reshape(-1,1)
  softmax_output = np.exp(shift_scores)/np.sum(np.exp(shift_scores), axis = 1).reshape(-1,1)
  loss = -np.sum(np.log(softmax_output[range(num_train), list(y)]))
  loss /= num_train #平均损失
  loss +=  0.5* reg * np.sum(W * W)#正则化处理
  
  dS = softmax_output.copy()
  dS[range(num_train), list(y)] += -1
  dW = (X.T).dot(dS)
  dW = dW/num_train + reg* W 
  #pass
  #############################################################################
  #                          END OF YOUR CODE                                 #
  #############################################################################

  return loss, dW