在此介绍的是使用FPGA实现SD NAND FLASH的读写操作,以雷龙发展提供的CS创世SD NAND FLASH样品为例,分别讲解电路连接、读写时序与仿真和实验结果。

目录

  1 视频讲解

  2 SD NAND FLASH背景介绍

  3 样品申请

  4 电路结构与接口协议

  4.1 SD NAND

  4.2 SD NAND测试板

  4.3 FPGA开发板

  5 SD卡协议与时序流程

  5.1 SD卡协议

  5.2 SD卡2.0版本初始化步骤

  5.3 SD卡的读步骤

  5.4 SD卡的写步骤

  6 模块代码

  6.1 sd_card_top

  6.2 sd_card_cmd

  6.3 sd_card_sec_read_write

  6.4 spi_master

  6.5 其余代码

  6.5.1 sd_card_test

  6.5.2 ax_debounce

  6.5.3 seg_decoder

  6.5.4 seg_scan

  7 实验结果

  8 参考资料

  使用FPGA讲解SD NAND FLASH的文章网上也有很多比较详实的内容,本文的部分思路也是参考了其他博主的博客思路。

  1 视频讲解

  为了便于更加清晰地讲解内容,本文也将文章的对应部分以视频的形式进行了录制:

  (后期正在紧锣密鼓制作ing)

  2 SD NAND FLASH背景介绍

  目前市面上主流的存储芯片,分为了EEPROM、NOR FLASH、NAND FLASH三种,其中后两种是市面上主要的非易失闪存技术,他们分别具有不同的特点:

  1.EEPROM

  EEPROM (Electrically Erasable Programmable read only memory)是指带电可擦可编程只读存储器。是一种掉电后数据不丢失的存储芯片。 EEPROM 可以在电脑上或专用设备上擦除已有信息,重新编程。一般用在即插即用设备中。

  相较于EEPROM计数,下文提到的FLASH技术,具有更快的速度,工艺上可以分为NOR FLASH和NAND FLASH两种

  2.NOR FLASH

  NOR FLASH是一种非易失闪存技术。其特点是芯片内执行 (XIP),应用程序可以直接在存储芯片内运行,不必再把代码读到系统 RAM 中。其传输效率较高高,在 1~4MB 的小容量时具有很高的成本效益。

  3.NAND FLASH

  NAND FLASH内部采用非线性宏单元模式,这种结构能提供极高的单元密度,并且写入和擦除的速度很快。作为当前最热门的存储芯片,目前生活中常见的电子产品都会使用到这种存储芯片,例如数码相机、U盘等等。

  由于NAND FLASH在大容量应用中的便利性,因此作为今天介绍的主角~

  什么是SD NAND呢(以下省略FLASH)?下面的内容是从雷龙发展官网的介绍中得到:

  SD NAND俗称贴片式TF卡,尽管与TF卡名称类似,但是有较大的区别:

编辑


  相比常见的TF卡,SD NAND是专门为内置存储进行设计,焊接在PCB板上以供工业级产品的应用。因此对品质稳定性、一致性、以及尺寸都有较高的要求。

  下图中左侧即为SD NAND、右侧是常见的TF卡。

编辑


  3 样品申请

  本文所使用的CS创世SD NAND是从深圳雷龙发展申请获得,可以在官网中最上面找到申请样品的入口:

编辑


  深圳市雷龙发展有限公司创立于2008年,专注NAND Flash设计研发13年。创始人均为步步高/华为技术背景出身。是一家专注于存储元器件代理分销商。 如果有一些技术问题也可以和其公司人员进行沟通,相关的工作人员非常专业和热心。

  下图是我收到的测试样品:

编辑


  4 电路结构与接口协议

  4.1 SD NAND

  本文所使用的产品是CSNP4GCR01-AMW,是雷龙的第二代产品,产品如下图所示:

编辑


  数据手册可以在立创商城进行下载,其封装与连接的电路原理参考图如下图所示:

编辑


编辑


  芯片共包含8个引脚,包括4根数据线(6、7、1、2);2根电源线(4、8);1根时钟线(3);1根命令控制线(5)

  手册中提供了SD NAND的两种使用模式,分别为SD MODE 以及 SPI MODE。他们所对应的引脚定义,如下图所示:

编辑


  对于两种模式的切换,官方给出了初始化的方式。下文在代码的时序部分也会涉及到相关内容。

  在对SD卡数据读写速度要求不高的情况下,选用SPI通信模式可以说是一种最佳方案。因为在该模式下,同只需要通过四根线就是可以完成所有的数据交换,可以为我们节省出宝贵的FPGA I/O资源。下图给出了SPI一对一通信时,主设备与从设备之间的连接关系。

  (注:SPI协议详解传送门)

编辑


  因此本文主要介绍SPI MODE下各个引脚的功能:

编辑


  确定了通讯模式后,也就便于我们后文中,利用这种通讯模式按照SD卡的读写时序进行读写操作。

  4.2 SD NAND测试板

  单独的SD NAND不便于我们使用FPGA进行读写测试,好在官方提供了测试板,如下图所示:

编辑


  有了它就可以轻松实现SD NAND与我们常见的FPGA开发板上的Micro SD插槽进行连接与测试了。

  适用产品:LGA8,6x8mm 封装的SD NAND产品。

  测试板尺寸:长度6.22厘米,宽度2.49厘米,接口长度2.53厘米。

  使用方法:将芯片焊接至测试板上,可在原有的Micro SD卡座上直接调试和测试。

  准备工具:热风枪,锡膏,镊子。温度要求:将热风枪温度调至300摄氏度℃即可焊接。

  4.3 FPGA开发板

  本文所使用的是黑金的AX301开发板,上面装有一个 Micro SD 卡座, FPGA 通过 SPI 数据总线访问 Micro SD 卡,SD 卡座和 FPGA 的硬件电路连接如下:

编辑


  借由硬件电路的连接,FPGA可以直接与我们的SD NAND进行通信了。

  至此,我们已经实现了SD NANDSPI通信方式方案的确定以及基于此的硬件电路连接,下一步就是根据SD卡的读写时序讲通信方式初始化为SPI模式,并按照SD卡协议进行读写操作。

  5 SD卡协议与时序流程

  5.1 SD卡协议

  以下内容来自黑金的实验手册:

  SD 卡的协议是一种简单的命令/响应的协议。全部命令由主机发起, SD 卡接收到命令后并返

  回响应数据。根据命令的不同,返回的数据内容和长度也不同。 SD 卡命令是一个 6 字节组成的命

  令包,其中第一个字节为命令号, 命令号高位 bit7 和 bit6 为固定的“01“,其它 6 个 bit 为具体

  的命令号。第 2 个字节到第 5 个字节为命令参数。第 6 个字节为 7 个 bit 的 CRC 校验加 1 个 bit 的结束位。 如果在 SPI 模式的时候, CRC 校验位为可选。 如下图所示, Command 表示命令,通常使用十进制表示名称,例如 CMD17,这个时候 Command 就是十进制的 17。

  对于详细的SD卡协议内容,可以参考传送门中的相关内容,给出了比较具体的解释。

编辑


  SD 卡对每个命令会返回一个响应,每个命令有一定的响应格式。响应的格式跟给它的命令号

  有关。在 SPI 模式中,有三种响应格式: R1, R2, R3。

编辑


编辑


编辑


  在进行SD NAND的SPI模式读写操作时,主要使用到了以下几种SD卡命令,下面的表格进行简单介绍,这里可以找到完整版:

编辑


  5.2 SD卡2.0版本初始化步骤

  1.   上电后延时至少 74clock,等待 SD 卡内部操作完成
  2.   片选 CS 低电平选中 SD 卡
  3.   发送 CMD0,需要返回 0x01,进入 Idle 状态
  4.   为了区别 SD 卡是 2.0 还是 1.0,或是 MMC 卡,这里根据协议向上兼容的,首先发送只有SD2.0 才有的命令 CMD8,如果 CMD8 返回无错误,则初步判断为 2.0 卡,进一步循环发送命令 CMD55+ACMD41,直到返回 0x00,确定 SD2.0 卡
  5.   如果 CMD8 返回错误则判断为 1.0 卡还是 MMC 卡,循环发送 CMD55+ACMD41,返回无错误,则为 SD1.0 卡,到此 SD1.0 卡初始成功,如果在一定的循环次数下,返回为错误,则进一步发送 CMD1 进行初始化,如果返回无错误,则确定为 MMC 卡,如果在一定的次数下,返回为错误,则不能识别该卡,初始化结束。 (通过 CMD16 可以改变 SD 卡一次性读写的长度)
  6.   CS 拉高

  5.3 SD卡的读步骤

  1.   发送 CMD17(单块)或 CMD18(多块)读命令,返回 0X00
  2.   接收数据开始令牌 fe(或 fc) +正式数据 512Bytes + CRC 校验 2Bytes(默认正式传输的数据长度是 512Bytes)

  5.4 SD卡的写步骤

  1.   发送 CMD24(单块)或 CMD25(多块)写命令,返回 0X00
  2.   发送数据开始令牌 fe(或 fc) +正式数据 512Bytes + CRC 校验 2Bytes

  6 模块代码

  本代码所实现的功能,是基于黑金AX301B,实现对SD NAND FLASH的数据写入与读取,并显示在开发板的数码管上。当按下开发板上的按键时,会自动将数据加一操作,并进行同步显示。

  前文介绍的是SD NAND的协议以及初始化、读写操作的流程,下面介绍代码的组成部分,整个工程主要由以下部分模块构成:

  sd_card_test(top模块)

  ax_debounce:ax_debounce_m0(按键消抖模块)

  sd_card_top:sd_card_top_m0(SD卡top模块)

  sd_card_cmd:sd_card_cmd_m0(SD卡指令)

  sd_card_sec_read_write:sd_card_sec_read_write_m0(SD卡读写)

  spi_master:spi_master_m0(SPI一个字节读写)

  seg_decoder:seg_decoder_m0(数码管控制)

  seg_decoder:seg_decoder_m1(数码管控制)

  seg_scan:seg_scan_m0(数码管控制)

  下面主要介绍上述四个加粗的模块以及其功能

  6.1 sd_card_top

  本模块是SD card的top模块,用来实现不同子模块之间的连接。

//

// //

// //

// Author: meisq //

// msq@qq.com //

// ALINX(shanghai) Technology Co.,Ltd //

// heijin //

// BBS: http://www.heijin.org/ //

// //

//

// //

// Copyright (c) 2017,ALINX(shanghai) Technology Co.,Ltd //

// All rights reserved //

// //

// This source file may be used and distributed without restriction provided //

// that this copyright statement is not removed from the file and that any //

// derivative work contains the original copyright notice and the associated //

// disclaimer. //

// //

//

//==========================================================================

// Revision History:

// Date By Revision Change Description

//--------------------------------------------------------------------------

// 2017/6/21 meisq 1.0 Original

//*************************************************************************/

module sd_card_top

#(

parameter SPI_LOW_SPEED_DIV = 248, // SD card low speed mode frequency division parameter,spi clk speed = clk speed /((SPI_LOW_SPEED_DIV + 2) * 2 )

parameter SPI_HIGH_SPEED_DIV = 0 // SD card high speed mode frequency division parameter,spi clk speed = clk speed /((SPI_HIGH_SPEED_DIV + 2) * 2 )

)

(

input clk,

input rst,

output SD_nCS, //SD card chip select (SPI mode)

output SD_DCLK, //SD card clock

output SD_MOSI, //SD card controller data output

input SD_MISO, //SD card controller data input

output sd_init_done, //SD card initialization is complete

input sd_sec_read, //SD card sector read

input[31:0] sd_sec_read_addr, //SD card sector read address

output[7:0] sd_sec_read_data, //SD card sector read data

output sd_sec_read_data_valid, //SD card sector read data valid

output sd_sec_read_end, //SD card sector read end

input sd_sec_write, //SD card sector write

input[31:0] sd_sec_write_addr, //SD card sector write address

input[7:0] sd_sec_write_data, //SD card sector write data

output sd_sec_write_data_req, //SD card sector write data next clock is valid

output sd_sec_write_end //SD card sector write end

);

wire[15:0] spi_clk_div; //SPI module clock division parameter

wire cmd_req; //SD card command request

wire cmd_req_ack; //SD card command request response

wire cmd_req_error; //SD card command request error

wire[47:0] cmd; //SD card command

wire[7:0] cmd_r1; //SD card expect response

wire[15:0] cmd_data_len; //SD card command read data length

wire block_read_req; //SD card sector data read request

wire block_read_valid; //SD card sector data read data valid

wire[7:0] block_read_data; //SD card sector data read data

wire block_read_req_ack; //SD card sector data read response

wire block_write_req; //SD card sector data write request

wire[7:0] block_write_data; //SD card sector data write data next clock is valid

wire block_write_data_rd; //SD card sector data write data

wire block_write_req_ack; //SD card sector data write response

wire nCS_ctrl; //SPI module chip select control

wire spi_wr_req; //SPI module data sending request

wire spi_wr_ack; //SPI module data request response

wire[7:0] spi_data_in; //SPI module send data

wire[7:0] spi_data_out; //SPI module data returned

wire[15:0] clk_div;

sd_card_sec_read_write

#(

.SPI_LOW_SPEED_DIV(SPI_LOW_SPEED_DIV),

.SPI_HIGH_SPEED_DIV(SPI_HIGH_SPEED_DIV)

)

sd_card_sec_read_write_m0(

.clk (clk ),

.rst (rst ),

.sd_init_done (sd_init_done ),

.sd_sec_read (sd_sec_read ),

.sd_sec_read_addr (sd_sec_read_addr ),

.sd_sec_read_data (sd_sec_read_data ),

.sd_sec_read_data_valid (sd_sec_read_data_valid ),

.sd_sec_read_end (sd_sec_read_end ),

.sd_sec_write (sd_sec_write ),

.sd_sec_write_addr (sd_sec_write_addr ),

.sd_sec_write_data (sd_sec_write_data ),

.sd_sec_write_data_req (sd_sec_write_data_req ),

.sd_sec_write_end (sd_sec_write_end ),

.spi_clk_div (spi_clk_div ),

.cmd_req (cmd_req ),

.cmd_req_ack (cmd_req_ack ),

.cmd_req_error (cmd_req_error ),

.cmd (cmd ),

.cmd_r1 (cmd_r1 ),

.cmd_data_len (cmd_data_len ),

.block_read_req (block_read_req ),

.block_read_valid (block_read_valid ),

.block_read_data (block_read_data ),

.block_read_req_ack (block_read_req_ack ),

.block_write_req (block_write_req ),

.block_write_data (block_write_data ),

.block_write_data_rd (block_write_data_rd ),

.block_write_req_ack (block_write_req_ack )

);

sd_card_cmd sd_card_cmd_m0(

.sys_clk (clk ),

.rst (rst ),

.spi_clk_div (spi_clk_div ),

.cmd_req (cmd_req ),

.cmd_req_ack (cmd_req_ack ),

.cmd_req_error (cmd_req_error ),

.cmd (cmd ),

.cmd_r1 (cmd_r1 ),

.cmd_data_len (cmd_data_len ),

.block_read_req (block_read_req ),

.block_read_req_ack (block_read_req_ack ),

.block_read_data (block_read_data ),

.block_read_valid (block_read_valid ),

.block_write_req (block_write_req ),

.block_write_data (block_write_data ),

.block_write_data_rd (block_write_data_rd ),

.block_write_req_ack (block_write_req_ack ),

.nCS_ctrl (nCS_ctrl ),

.clk_div (clk_div ),

.spi_wr_req (spi_wr_req ),

.spi_wr_ack (spi_wr_ack ),

.spi_data_in (spi_data_in ),

.spi_data_out (spi_data_out )

);

spi_master spi_master_m0(

.sys_clk (clk ),

.rst (rst ),

.nCS (SD_nCS ),

.DCLK (SD_DCLK ),

.MOSI (SD_MOSI ),

.MISO (SD_MISO ),

.clk_div (clk_div ),

.CPOL (1'b1 ),

.CPHA (1'b1 ),

.nCS_ctrl (nCS_ctrl ),

.wr_req (spi_wr_req ),

.wr_ack (spi_wr_ack ),

.data_in (spi_data_in ),

.data_out (spi_data_out )

);

endmodule

  6.2 sd_card_cmd

  sd_card_cmd 模块主要实验 sd 卡基本命令操作,还有上电初始化的 88 个周期的时钟,数据

  块的读写,状态机如下:

编辑


  代码如下:

//

// //

// //

// Author: meisq //

// msq@qq.com //

// ALINX(shanghai) Technology Co.,Ltd //

// heijin //

// BBS: http://www.heijin.org/ //

// //

//

// //

// Copyright (c) 2017,ALINX(shanghai) Technology Co.,Ltd //

// All rights reserved //

// //

// This source file may be used and distributed without restriction provided //

// that this copyright statement is not removed from the file and that any //

// derivative work contains the original copyright notice and the associated //

// disclaimer. //

// //

//

//==========================================================================

// Revision History:

// Date By Revision Change Description

//--------------------------------------------------------------------------

// 2017/6/21 meisq 1.0 Original

//*************************************************************************/

module sd_card_cmd(

input sys_clk,

input rst,

input[15:0] spi_clk_div, //SPI module clock division parameter

input cmd_req, //SD card command request

output cmd_req_ack, //SD card command request response

output reg cmd_req_error, //SD card command request error

input[47:0] cmd, //SD card command

input[7:0] cmd_r1, //SD card expect response

input[15:0] cmd_data_len, //SD card command read data length

input block_read_req, //SD card sector data read request

output reg block_read_valid, //SD card sector data read data valid

output reg[7:0] block_read_data, //SD card sector data read data

output block_read_req_ack, //SD card sector data read response

input block_write_req, //SD card sector data write request

input[7:0] block_write_data, //SD card sector data write data next clock is valid

output block_write_data_rd, //SD card sector data write data

output block_write_req_ack, //SD card sector data write response

output nCS_ctrl, //SPI module chip select control

output reg[15:0] clk_div,

output reg spi_wr_req, //SPI module data sending request

input spi_wr_ack, //SPI module data request response

output[7:0] spi_data_in, //SPI module send data

input[7:0] spi_data_out //SPI module data returned

);

parameter S_IDLE = 0;

parameter S_WAIT = 1;

parameter S_INIT = 2;

parameter S_CMD_PRE = 3;

parameter S_CMD = 4;

parameter S_CMD_DATA = 5;

parameter S_READ_WAIT = 6;

parameter S_READ = 7;

parameter S_READ_ACK = 8;

parameter S_WRITE_TOKEN = 9;

parameter S_WRITE_DATA_0 = 10;

parameter S_WRITE_DATA_1 = 11;

parameter S_WRITE_CRC = 12;

parameter S_WRITE_ACK = 13;

parameter S_ERR = 14;

parameter S_END = 15;

reg[3:0] state;

reg CS_reg;

reg[15:0] byte_cnt;

reg[7:0] send_data;

wire[7:0] data_recv;

reg[9:0] wr_data_cnt;

assign cmd_req_ack = (state == S_END);

assign block_read_req_ack = (state == S_READ_ACK);

assign block_write_req_ack= (state == S_WRITE_ACK);

assign block_write_data_rd = (state == S_WRITE_DATA_0);

assign spi_data_in = send_data;

assign data_recv = spi_data_out;

assign nCS_ctrl = CS_reg;

always@(posedge sys_clk or posedge rst)

begin

if(rst == 1'b1)

begin

CS_reg <= 1'b1;

spi_wr_req <= 1'b0;

byte_cnt <= 16'd0;

clk_div <= 16'd0;

send_data <= 8'hff;

state <= S_IDLE;

cmd_req_error <= 1'b0;

wr_data_cnt <= 10'd0;

end

else

case(state)

S_IDLE:

begin

state <= S_INIT;

clk_div <= spi_clk_div;

CS_reg <= 1'b1;

end

S_INIT:

begin

//send 11 bytes on power(at least 74 SPI clocks)

if(spi_wr_ack == 1'b1)

begin

if(byte_cnt >= 16'd10)

begin

byte_cnt <= 16'd0;

spi_wr_req <= 1'b0;

state <= S_WAIT;

end

begin

byte_cnt <= byte_cnt + 16'd1;

end

end

else

begin

spi_wr_req <= 1'b1;

send_data <= 8'hff;

end

end

S_WAIT:

begin

cmd_req_error <= 1'b0;

wr_data_cnt <= 10'd0;

//wait for instruction

if(cmd_req == 1'b1)

state <= S_CMD_PRE;

else if(block_read_req == 1'b1)

state <= S_READ_WAIT;

else if(block_write_req == 1'b1)

state <= S_WRITE_TOKEN;

clk_div <= spi_clk_div;

end

S_CMD_PRE:

begin

//before sending a command, send an byte 'ff',provide some clocks

if(spi_wr_ack == 1'b1)

begin

state <= S_CMD;

spi_wr_req <= 1'b0;

byte_cnt <= 16'd0;

end

else

begin

spi_wr_req <= 1'b1;

CS_reg <= 1'b1;

send_data <= 8'hff;

end

end

S_CMD:

begin

if(spi_wr_ack == 1'b1)

begin

if((byte_cnt == 16'hffff) || (data_recv != cmd_r1 && data_recv[7] == 1'b0))

begin

state <= S_ERR;

spi_wr_req <= 1'b0;

end

else if(data_recv == cmd_r1)

begin

spi_wr_req <= 1'b0;

if(cmd_data_len != 16'd0)

begin

state <= S_CMD_DATA;

byte_cnt <= 16'd0;

end

else

state <= S_END;

end

else

byte_cnt <= byte_cnt + 16'd1;

end

else

begin

spi_wr_req <= 1'b1;

CS_reg <= 1'b0;

if(byte_cnt == 16'd0)

send_data <= (cmd[47:40] | 8'h40);

else if(byte_cnt == 16'd1)

send_data <= cmd[39:32];

else if(byte_cnt == 16'd2)

send_data <= cmd[31:24];

else if(byte_cnt == 16'd3)

send_data <= cmd[23:16];

else if(byte_cnt == 16'd4)

send_data <= cmd[15:8];

else if(byte_cnt == 16'd5)

send_data <= cmd[7:0];

else

send_data <= 8'hff;

end

end

S_CMD_DATA:

begin

if(spi_wr_ack == 1'b1)

begin

if(byte_cnt == cmd_data_len - 16'd1)

begin

state <= S_END;

spi_wr_req <= 1'b0;

byte_cnt <= 16'd0;

end

else

begin

byte_cnt <= byte_cnt + 16'd1;

end

end

else

begin

spi_wr_req <= 1'b1;

send_data <= 8'hff;

end

end

S_READ_WAIT:

begin

if(spi_wr_ack == 1'b1 && data_recv == 8'hfe)

begin

spi_wr_req <= 1'b0;

state <= S_READ;

byte_cnt <= 16'd0;

end

else

begin

spi_wr_req <= 1'b1;

send_data <= 8'hff;

end

end

S_READ:

begin

if(spi_wr_ack == 1'b1)

begin

if(byte_cnt == 16'd513)

begin

state <= S_READ_ACK;

spi_wr_req <= 1'b0;

byte_cnt <= 16'd0;

end

else

begin

byte_cnt <= byte_cnt + 16'd1;

end

end

else

begin

spi_wr_req <= 1'b1;

send_data <= 8'hff;

end

end

S_WRITE_TOKEN:

if(spi_wr_ack == 1'b1)

begin

state <= S_WRITE_DATA_0;

spi_wr_req <= 1'b0;

end

else

begin

spi_wr_req <= 1'b1;

send_data <= 8'hfe;

end

S_WRITE_DATA_0:

begin

state <= S_WRITE_DATA_1;

wr_data_cnt <= wr_data_cnt + 10'd1;

end

S_WRITE_DATA_1:

begin

if(spi_wr_ack == 1'b1 && wr_data_cnt == 10'd512)

begin

state <= S_WRITE_CRC;

spi_wr_req <= 1'b0;

end

else if(spi_wr_ack == 1'b1)

begin

state <= S_WRITE_DATA_0;

spi_wr_req <= 1'b0;

end

else

begin

spi_wr_req <= 1'b1;

send_data <= block_write_data;

end

end

S_WRITE_CRC:

begin

if(spi_wr_ack == 1'b1)

begin

if(byte_cnt == 16'd2)

begin

state <= S_WRITE_ACK;

spi_wr_req <= 1'b0;

byte_cnt <= 16'd0;

end

else

begin

byte_cnt <= byte_cnt + 16'd1;

end

end

else

begin

spi_wr_req <= 1'b1;

send_data <= 8'hff;

end

end

S_ERR:

begin

state <= S_END;

cmd_req_error <= 1'b1;

end

S_READ_ACK,S_WRITE_ACK,S_END:

begin

state <= S_WAIT;

end

default:

state <= S_IDLE;

endcase

end

always@(posedge sys_clk or posedge rst)

begin

if(rst == 1'b1)

block_read_valid <= 1'b0;

else if(state == S_READ && byte_cnt < 16'd512)

block_read_valid <= spi_wr_ack;

else

block_read_valid <= 1'b0;

end

always@(posedge sys_clk or posedge rst)

begin

if(rst == 1'b1)

block_read_data <= 8'd0;

else if(state == S_READ && spi_wr_ack == 1'b1)

block_read_data <= data_recv;

end

endmodule

  6.3 sd_card_sec_read_write

  sd_card_sec_read_write 模块继续完成 SD 卡初始化,然后等待扇区读写指令,并完成扇区的

  读写操作。 下图为模块的状态机转换图,首先发送 CMD0 命令,然后发送 CMD8 命令,再发送

  CMD55,接着发送 ACMD41,如果应答正常, sd 卡初始化完成,等待扇区的读写。

编辑


  代码如下:

//

// //

// //

// Author: meisq //

// msq@qq.com //

// ALINX(shanghai) Technology Co.,Ltd //

// heijin //

// BBS: http://www.heijin.org/ //

// //

//

// //

// Copyright (c) 2017,ALINX(shanghai) Technology Co.,Ltd //

// All rights reserved //

// //

// This source file may be used and distributed without restriction provided //

// that this copyright statement is not removed from the file and that any //

// derivative work contains the original copyright notice and the associated //

// disclaimer. //

// //

//

//===============================================================================

// Revision History:

// Date By Revision Change Description

//-------------------------------------------------------------------------------

// 2017/6/21 meisq 1.0 Original

//*******************************************************************************/

module sd_card_sec_read_write

#(

parameter SPI_LOW_SPEED_DIV = 248, // spi clk speed = clk speed /((SPI_LOW_SPEED_DIV + 2) * 2 )

parameter SPI_HIGH_SPEED_DIV = 0 // spi clk speed = clk speed /((SPI_HIGH_SPEED_DIV + 2) * 2 )

)

(

input clk,

input rst,

output reg sd_init_done,

input sd_sec_read,

input[31:0] sd_sec_read_addr,

output[7:0] sd_sec_read_data,

output sd_sec_read_data_valid,

output sd_sec_read_end,

input sd_sec_write,

input[31:0] sd_sec_write_addr,

input[7:0] sd_sec_write_data,

output sd_sec_write_data_req,

output sd_sec_write_end,

output reg[15:0] spi_clk_div,

output reg cmd_req,

input cmd_req_ack,

input cmd_req_error,

output reg[47:0] cmd,

output reg[7:0] cmd_r1,

output reg[15:0] cmd_data_len,

output reg block_read_req,

input block_read_valid,

input[7:0] block_read_data,

input block_read_req_ack,

output reg block_write_req,

output[7:0] block_write_data,

input block_write_data_rd,

input block_write_req_ack

);

reg[7:0] read_data;

reg[31:0] timer;

localparam S_IDLE = 0;

localparam S_CMD0 = 1;

localparam S_CMD8 = 2;

localparam S_CMD55 = 3;

localparam S_CMD41 = 4;

localparam S_CMD17 = 5;

localparam S_READ = 6;

localparam S_CMD24 = 7;

localparam S_WRITE = 8;

localparam S_ERR = 14;

localparam S_WRITE_END = 15;

localparam S_READ_END = 16;

localparam S_WAIT_READ_WRITE = 17;

localparam S_CMD16 = 18;

reg[4:0] state;

reg[31:0] sec_addr;

assign sd_sec_read_data_valid = (state == S_READ) && block_read_valid;

assign sd_sec_read_data = block_read_data;

assign sd_sec_read_end = (state == S_READ_END);

assign sd_sec_write_data_req = (state == S_WRITE) && block_write_data_rd;

assign block_write_data = sd_sec_write_data;

assign sd_sec_write_end = (state == S_WRITE_END);

always@(posedge clk or posedge rst)

begin

if(rst == 1'b1)

begin

state <= S_IDLE;

cmd_req <= 1'b0;

cmd_data_len <= 16'd0;

cmd_r1 <= 8'd0;

cmd <= 48'd0;

spi_clk_div <= SPI_LOW_SPEED_DIV[15:0];

block_write_req <= 1'b0;

block_read_req <= 1'b0;

sec_addr <= 32'd0;

sd_init_done <= 1'b0;

end

else

case(state)

S_IDLE:

begin

state <= S_CMD0;

sd_init_done <= 1'b0;

spi_clk_div <= SPI_LOW_SPEED_DIV[15:0];

end

S_CMD0:

begin

if(cmd_req_ack & ~cmd_req_error)

begin

state <= S_CMD8;

cmd_req <= 1'b0;

end

else

begin

cmd_req <= 1'b1;

cmd_data_len <= 16'd0;

cmd_r1 <= 8'h01;

cmd <= {8'd0,8'h00,8'h00,8'h00,8'h00,8'h95};

end

end

S_CMD8:

begin

if(cmd_req_ack & ~cmd_req_error)

begin

state <= S_CMD55;

cmd_req <= 1'b0;

end

else

begin

cmd_req <= 1'b1;

cmd_data_len <= 16'd4;

cmd_r1 <= 8'h01;

cmd <= {8'd8,8'h00,8'h00,8'h01,8'haa,8'h87};

end

end

S_CMD55:

begin

if(cmd_req_ack & ~cmd_req_error)

begin

state <= S_CMD41;

cmd_req <= 1'b0;

end

else

begin

cmd_req <= 1'b1;

cmd_data_len <= 16'd0;

cmd_r1 <= 8'h01;

cmd <= {8'd55,8'h00,8'h00,8'h00,8'h00,8'hff};

end

end

S_CMD41:

begin

if(cmd_req_ack & ~cmd_req_error)

begin

state <= S_CMD16;

cmd_req <= 1'b0;

sd_init_done <= 1'b1;

spi_clk_div <= SPI_HIGH_SPEED_DIV[15:0];

end

else if(cmd_req_ack)

begin

state <= S_CMD55;

end

else

begin

cmd_req <= 1'b1;

cmd_data_len <= 16'd0;

cmd_r1 <= 8'h00;

cmd <= {8'd41,8'h40,8'h00,8'h00,8'h00,8'hff};

end

end

S_CMD16:

begin

if(cmd_req_ack & ~cmd_req_error)

begin

state <= S_WAIT_READ_WRITE;

cmd_req <= 1'b0;

sd_init_done <= 1'b1;

spi_clk_div <= SPI_HIGH_SPEED_DIV[15:0];

end

else if(cmd_req_ack)

begin

state <= S_CMD55;

end

else

begin

cmd_req <= 1'b1;

cmd_data_len <= 16'd0;

cmd_r1 <= 8'h00;

cmd <= {8'd16,32'd512,8'hff};

end

end

S_WAIT_READ_WRITE:

begin

if(sd_sec_write == 1'b1)

begin

state <= S_CMD24;

sec_addr <= sd_sec_write_addr;

end

else if(sd_sec_read == 1'b1)

begin

state <= S_CMD17;

sec_addr <= sd_sec_read_addr;

end

spi_clk_div <= 16'd0;

end

S_CMD24:

begin

if(cmd_req_ack & ~cmd_req_error)

begin

state <= S_WRITE;

cmd_req <= 1'b0;

end

else

begin

cmd_req <= 1'b1;

cmd_data_len <= 16'd0;

cmd_r1 <= 8'h00;

cmd <= {8'd24,sec_addr,8'hff};

end

end

S_WRITE:

begin

if(block_write_req_ack == 1'b1)

begin

block_write_req <= 1'b0;

state <= S_WRITE_END;

end

else

block_write_req <= 1'b1;

end

S_CMD17:

begin

if(cmd_req_ack & ~cmd_req_error)

begin

state <= S_READ;

cmd_req <= 1'b0;

end

else

begin

cmd_req <= 1'b1;

cmd_data_len <= 16'd0;

cmd_r1 <= 8'h00;

cmd <= {8'd17,sec_addr,8'hff};

end

end

S_READ:

begin

if(block_read_req_ack)

begin

state <= S_READ_END;

block_read_req <= 1'b0;

end

else

begin

block_read_req <= 1'b1;

end

end

S_WRITE_END:

begin

state <= S_WAIT_READ_WRITE;

end

S_READ_END:

begin

state <= S_WAIT_READ_WRITE;

end

default:

state <= S_IDLE;

endcase

end

endmodule

  6.4 spi_master

  这一模块用来完成SPI一个字节的读写。

  spi master 状态机设计, 主要完成一个字节 spi 数据的读写,由于是全双工的,写一个字节的

  同时也读一个字节。 首先空闲状态“IDLE”接收到写请求后进入“DCLK_IDLE”状态,这个状态为

  spi 时钟沿变化保持一定的时间,用来控制 spi 时钟的周期,然后进入 spi 时钟沿的变化状态,一

  个字节上升沿和下降沿一共 16 个数据沿。 在最后一个数据沿进入“LAST_HALF_CYCLE”状态,为

  让最后一个沿也保持一定的时间,再进入应答状态,完成一次写请求。spi_master 模块中模拟了一个 spi 时钟,在状态机进入到‘DCLK_EDGE’时进行翻转。状态机图示如下:

编辑


  代码如下:

//

// //

// //

// Author: meisq //

// msq@qq.com //

// ALINX(shanghai) Technology Co.,Ltd //

// heijin //

// BBS: http://www.heijin.org/ //

// //

//

// //

// Copyright (c) 2017,ALINX(shanghai) Technology Co.,Ltd //

// All rights reserved //

// //

// This source file may be used and distributed without restriction provided //

// that this copyright statement is not removed from the file and that any //

// derivative work contains the original copyright notice and the associated //

// disclaimer. //

// //

//

//==========================================================================

// Revision History:

// Date By Revision Change Description

//--------------------------------------------------------------------------

// 2017/6/19 meisq 1.0 Original

//*************************************************************************/

module spi_master

(

input sys_clk,

input rst,

output nCS, //chip select (SPI mode)

output DCLK, //spi clock

output MOSI, //spi data output

input MISO, //spi input

input CPOL,

input CPHA,

input nCS_ctrl,

input[15:0] clk_div,

input wr_req,

output wr_ack,

input[7:0] data_in,

output[7:0] data_out

);

localparam IDLE = 0;

localparam DCLK_EDGE = 1;

localparam DCLK_IDLE = 2;

localparam ACK = 3;

localparam LAST_HALF_CYCLE = 4;

localparam ACK_WAIT = 5;

reg DCLK_reg;

reg[7:0] MOSI_shift;

reg[7:0] MISO_shift;

reg[2:0] state;

reg[2:0] next_state;

reg [15:0] clk_cnt;

reg[4:0] clk_edge_cnt;

assign MOSI = MOSI_shift[7];

assign DCLK = DCLK_reg;

assign data_out = MISO_shift;

assign wr_ack = (state == ACK);

assign nCS = nCS_ctrl;

always@(posedge sys_clk or posedge rst)

begin

if(rst)

state <= IDLE;

else

state <= next_state;

end

always@(*)

begin

case(state)

IDLE:

if(wr_req == 1'b1)

next_state <= DCLK_IDLE;

else

next_state <= IDLE;

DCLK_IDLE:

//half a SPI clock cycle produces a clock edge

if(clk_cnt == clk_div)

next_state <= DCLK_EDGE;

else

next_state <= DCLK_IDLE;

DCLK_EDGE:

//a SPI byte with a total of 16 clock edges

if(clk_edge_cnt == 5'd15)

next_state <= LAST_HALF_CYCLE;

else

next_state <= DCLK_IDLE;

//this is the last data edge

LAST_HALF_CYCLE:

if(clk_cnt == clk_div)

next_state <= ACK;

else

next_state <= LAST_HALF_CYCLE;

//send one byte complete

ACK:

next_state <= ACK_WAIT;

//wait for one clock cycle, to ensure that the cancel request signal

ACK_WAIT:

next_state <= IDLE;

default:

next_state <= IDLE;

endcase

end

always@(posedge sys_clk or posedge rst)

begin

if(rst)

DCLK_reg <= 1'b0;

else if(state == IDLE)

DCLK_reg <= CPOL;

else if(state == DCLK_EDGE)

DCLK_reg <= ~DCLK_reg;//SPI clock edge

end

//SPI clock wait counter

always@(posedge sys_clk or posedge rst)

begin

if(rst)

clk_cnt <= 16'd0;

else if(state == DCLK_IDLE || state == LAST_HALF_CYCLE)

clk_cnt <= clk_cnt + 16'd1;

else

clk_cnt <= 16'd0;

end

//SPI clock edge counter

always@(posedge sys_clk or posedge rst)

begin

if(rst)

clk_edge_cnt <= 5'd0;

else if(state == DCLK_EDGE)

clk_edge_cnt <= clk_edge_cnt + 5'd1;

else if(state == IDLE)

clk_edge_cnt <= 5'd0;

end

//SPI data output

always@(posedge sys_clk or posedge rst)

begin

if(rst)

MOSI_shift <= 8'd0;

else if(state == IDLE && wr_req)

MOSI_shift <= data_in;

else if(state == DCLK_EDGE)

if(CPHA == 1'b0 && clk_edge_cnt[0] == 1'b1)

MOSI_shift <= {MOSI_shift[6:0],MOSI_shift[7]};

else if(CPHA == 1'b1 && (clk_edge_cnt != 5'd0 && clk_edge_cnt[0] == 1'b0))

MOSI_shift <= {MOSI_shift[6:0],MOSI_shift[7]};

end

//SPI data input

always@(posedge sys_clk or posedge rst)

begin

if(rst)

MISO_shift <= 8'd0;

else if(state == IDLE && wr_req)

MISO_shift <= 8'h00;

else if(state == DCLK_EDGE)

if(CPHA == 1'b0 && clk_edge_cnt[0] == 1'b0)

MISO_shift <= {MISO_shift[6:0],MISO};

else if(CPHA == 1'b1 && (clk_edge_cnt[0] == 1'b1))

MISO_shift <= {MISO_shift[6:0],MISO};

end

endmodule

  6.5 其余代码

  6.5.1 sd_card_test

//

// //

// //

// Author: meisq //

// msq@qq.com //

// ALINX(shanghai) Technology Co.,Ltd //

// heijin //

// BBS: http://www.heijin.org/ //

// //

//

// //

// Copyright (c) 2017,ALINX(shanghai) Technology Co.,Ltd //

// All rights reserved //

// //

// This source file may be used and distributed without restriction provided //

// that this copyright statement is not removed from the file and that any //

// derivative work contains the original copyright notice and the associated //

// disclaimer. //

// //

//

//================================================================================

// Revision History:

// Date By Revision Change Description

//--------------------------------------------------------------------------------

// 2017/6/19 meisq 1.0 Original

//*******************************************************************************/

module sd_card_test(

input clk,

input rst_n,

input key1,

output SD_nCS,

output SD_DCLK,

output SD_MOSI,

input SD_MISO,

output [5:0] seg_sel,

output [7:0] seg_data

);

parameter S_IDLE = 0;

parameter S_READ = 1;

parameter S_WRITE = 2;

parameter S_END = 3;

reg[3:0] state;

wire sd_init_done;

reg sd_sec_read;

wire[31:0] sd_sec_read_addr;

wire[7:0] sd_sec_read_data;

wire sd_sec_read_data_valid;

wire sd_sec_read_end;

reg sd_sec_write;

wire[31:0] sd_sec_write_addr;

reg [7:0] sd_sec_write_data;

wire sd_sec_write_data_req;

wire sd_sec_write_end;

reg[9:0] wr_cnt;

reg[9:0] rd_cnt;

wire button_negedge;

reg[7:0] read_data;

ax_debounce ax_debounce_m0

(

.clk (clk),

.rst (~rst_n),

.button_in (key1),

.button_posedge (),

.button_negedge (button_negedge),

.button_out ()

);

wire[6:0] seg_data_0;

seg_decoder seg_decoder_m0(

.bin_data (read_data[3:0]),

.seg_data (seg_data_0)

);

wire[6:0] seg_data_1;

seg_decoder seg_decoder_m1(

.bin_data (read_data[7:4]),

.seg_data (seg_data_1)

);

seg_scan seg_scan_m0(

.clk (clk),

.rst_n (rst_n),

.seg_sel (seg_sel),

.seg_data (seg_data),

.seg_data_0 ({1'b1,7'b1111_111}),

.seg_data_1 ({1'b1,7'b1111_111}),

.seg_data_2 ({1'b1,7'b1111_111}),

.seg_data_3 ({1'b1,7'b1111_111}),

.seg_data_4 ({1'b1,seg_data_1}),

.seg_data_5 ({sd_init_done,seg_data_0})

);

always@(posedge clk or negedge rst_n)

begin

if(rst_n == 1'b0)

wr_cnt <= 10'd0;

else if(state == S_WRITE)

begin

if(sd_sec_write_data_req == 1'b1)

wr_cnt <= wr_cnt + 10'd1;

end

else

wr_cnt <= 10'd0;

end

always@(posedge clk or negedge rst_n)

begin

if(rst_n == 1'b0)

rd_cnt <= 10'd0;

else if(state == S_READ)

begin

if(sd_sec_read_data_valid == 1'b1)

rd_cnt <= rd_cnt + 10'd1;

end

else

rd_cnt <= 10'd0;

end

always@(posedge clk or negedge rst_n)

begin

if(rst_n == 1'b0)

read_data <= 8'd0;

else if(state == S_READ)

begin

if(sd_sec_read_data_valid == 1'b1 && rd_cnt == 10'd0)

read_data <= sd_sec_read_data;

end

else if(state == S_END && button_negedge == 1'b1)

read_data <= read_data + 8'd1;

end

always@(posedge clk or negedge rst_n)

begin

if(rst_n == 1'b0)

sd_sec_write_data <= 8'd0;

else if(sd_sec_write_data_req)

sd_sec_write_data <= read_data + wr_cnt[7:0];

end

always@(posedge clk or negedge rst_n)

begin

if(rst_n == 1'b0)

begin

state <= S_IDLE;

sd_sec_read <= 1'b0;

sd_sec_write <= 1'b0;

end

else if(sd_init_done == 1'b0)

begin

state <= S_IDLE;

end

else

case(state)

S_IDLE:

begin

state <= S_READ;

end

S_WRITE:

begin

if(sd_sec_write_end == 1'b1)

begin

sd_sec_write <= 1'b0;

state <= S_READ;

end

else

sd_sec_write <= 1'b1;

end

S_READ:

begin

if(sd_sec_read_end == 1'b1)

begin

state <= S_END;

sd_sec_read <= 1'b0;

end

else

begin

sd_sec_read <= 1'b1;

end

end

S_END:

begin

if(button_negedge == 1'b1)

state <= S_WRITE;

end

default:

state <= S_IDLE;

endcase

end

sd_card_top sd_card_top_m0(

.clk (clk ),

.rst (~rst_n ),

.SD_nCS (SD_nCS ),

.SD_DCLK (SD_DCLK ),

.SD_MOSI (SD_MOSI ),

.SD_MISO (SD_MISO ),

.sd_init_done (sd_init_done ),

.sd_sec_read (sd_sec_read ),

.sd_sec_read_addr (sd_sec_read_addr ),

.sd_sec_read_data (sd_sec_read_data ),

.sd_sec_read_data_valid (sd_sec_read_data_valid ),

.sd_sec_read_end (sd_sec_read_end ),

.sd_sec_write (sd_sec_write ),

.sd_sec_write_addr (sd_sec_write_addr ),

.sd_sec_write_data (sd_sec_write_data ),

.sd_sec_write_data_req (sd_sec_write_data_req ),

.sd_sec_write_end (sd_sec_write_end )

);

endmodule

  6.5.2 ax_debounce

//

// //

// //

// Author: meisq //

// msq@qq.com //

// ALINX(shanghai) Technology Co.,Ltd //

// heijin //

// BBS: http://www.heijin.org/ //

// //

//

// //

// Copyright (c) 2017,ALINX(shanghai) Technology Co.,Ltd //

// All rights reserved //

// //

// This source file may be used and distributed without restriction provided //

// that this copyright statement is not removed from the file and that any //

// derivative work contains the original copyright notice and the associated //

// disclaimer. //

// //

//

//================================================================================

// Revision History:

// Date By Revision Change Description

//--------------------------------------------------------------------------------

// 2017/5/3 meisq 1.0 Original

//*******************************************************************************/

`timescale 1 ns / 100 ps

module ax_debounce

(

input clk,

input rst,

input button_in,

output reg button_posedge,

output reg button_negedge,

output reg button_out

);

---------------- internal constants --------------

parameter N = 32 ; // debounce timer bitwidth

parameter FREQ = 50; //model clock :Mhz

parameter MAX_TIME = 20; //ms

localparam TIMER_MAX_VAL = MAX_TIME * 1000 * FREQ;

---------------- internal variables ---------------

reg [N-1 : 0] q_reg; // timing regs

reg [N-1 : 0] q_next;

reg DFF1, DFF2; // input flip-flops

wire q_add; // control flags

wire q_reset;

reg button_out_d0;

------------------------------------------------------

contenious assignment for counter control

assign q_reset = (DFF1 ^ DFF2); // xor input flip flops to look for level chage to reset counter

assign q_add = ~(q_reg == TIMER_MAX_VAL); // add to counter when q_reg msb is equal to 0

combo counter to manage q_next

always @ ( q_reset, q_add, q_reg)

begin

case( {q_reset , q_add})

2'b00 :

q_next <= q_reg;

2'b01 :

q_next <= q_reg + 1;

default :

q_next <= { N {1'b0} };

endcase

end

Flip flop inputs and q_reg update

always @ ( posedge clk or posedge rst)

begin

if(rst == 1'b1)

begin

DFF1 <= 1'b0;

DFF2 <= 1'b0;

q_reg <= { N {1'b0} };

end

else

begin

DFF1 <= button_in;

DFF2 <= DFF1;

q_reg <= q_next;

end

end

counter control

always @ ( posedge clk or posedge rst)

begin

if(rst == 1'b1)

button_out <= 1'b1;

else if(q_reg == TIMER_MAX_VAL)

button_out <= DFF2;

else

button_out <= button_out;

end

always @ ( posedge clk or posedge rst)

begin

if(rst == 1'b1)

begin

button_out_d0 <= 1'b1;

button_posedge <= 1'b0;

button_negedge <= 1'b0;

end

else

begin

button_out_d0 <= button_out;

button_posedge <= ~button_out_d0 & button_out;

button_negedge <= button_out_d0 & ~button_out;

end

end

endmodule

  6.5.3 seg_decoder

//

// //

// //

// Author: meisq //

// msq@qq.com //

// ALINX(shanghai) Technology Co.,Ltd //

// heijin //

// BBS: http://www.heijin.org/ //

// //

//

// //

// Copyright (c) 2017,ALINX(shanghai) Technology Co.,Ltd //

// All rights reserved //

// //

// This source file may be used and distributed without restriction provided //

// that this copyright statement is not removed from the file and that any //

// derivative work contains the original copyright notice and the associated //

// disclaimer. //

// //

//

//==========================================================================

// Revision History:

// Date By Revision Change Description

//--------------------------------------------------------------------------

// 2017/6/19 meisq 1.0 Original

//*************************************************************************/

module seg_decoder

(

input[3:0] bin_data, // bin data input

output reg[6:0] seg_data // seven segments LED output

);

always@(*)

begin

case(bin_data)

4'd0:seg_data <= 7'b100_0000;

4'd1:seg_data <= 7'b111_1001;

4'd2:seg_data <= 7'b010_0100;

4'd3:seg_data <= 7'b011_0000;

4'd4:seg_data <= 7'b001_1001;

4'd5:seg_data <= 7'b001_0010;

4'd6:seg_data <= 7'b000_0010;

4'd7:seg_data <= 7'b111_1000;

4'd8:seg_data <= 7'b000_0000;

4'd9:seg_data <= 7'b001_0000;

4'ha:seg_data <= 7'b000_1000;

4'hb:seg_data <= 7'b000_0011;

4'hc:seg_data <= 7'b100_0110;

4'hd:seg_data <= 7'b010_0001;

4'he:seg_data <= 7'b000_0110;

4'hf:seg_data <= 7'b000_1110;

default:seg_data <= 7'b111_1111;

endcase

end

endmodule

  6.5.4 seg_scan

//

// //

// //

// Author: meisq //

// msq@qq.com //

// ALINX(shanghai) Technology Co.,Ltd //

// heijin //

// BBS: http://www.heijin.org/ //

// //

//

// //

// Copyright (c) 2017,ALINX(shanghai) Technology Co.,Ltd //

// All rights reserved //

// //

// This source file may be used and distributed without restriction provided //

// that this copyright statement is not removed from the file and that any //

// derivative work contains the original copyright notice and the associated //

// disclaimer. //

// //

//

//==========================================================================

// Revision History:

// Date By Revision Change Description

//--------------------------------------------------------------------------

// 2017/6/19 meisq 1.0 Original

//*************************************************************************/

module seg_scan(

input clk,

input rst_n,

output reg[5:0] seg_sel, //digital led chip select

output reg[7:0] seg_data, //eight segment digital tube output,MSB is the decimal point

input[7:0] seg_data_0,

input[7:0] seg_data_1,

input[7:0] seg_data_2,

input[7:0] seg_data_3,

input[7:0] seg_data_4,

input[7:0] seg_data_5

);

parameter SCAN_FREQ = 200; //scan frequency

parameter CLK_FREQ = 50000000; //clock frequency

parameter SCAN_COUNT = CLK_FREQ /(SCAN_FREQ * 6) - 1;

reg[31:0] scan_timer; //scan time counter

reg[3:0] scan_sel; //Scan select counter

always@(posedge clk or negedge rst_n)

begin

if(rst_n == 1'b0)

begin

scan_timer <= 32'd0;

scan_sel <= 4'd0;

end

else if(scan_timer >= SCAN_COUNT)

begin

scan_timer <= 32'd0;

if(scan_sel == 4'd5)

scan_sel <= 4'd0;

else

scan_sel <= scan_sel + 4'd1;

end

else

begin

scan_timer <= scan_timer + 32'd1;

end

end

always@(posedge clk or negedge rst_n)

begin

if(rst_n == 1'b0)

begin

seg_sel <= 6'b111111;

seg_data <= 8'hff;

end

else

begin

case(scan_sel)

//first digital led

4'd0:

begin

seg_sel <= 6'b11_1110;

seg_data <= seg_data_0;

end

//second digital led

4'd1:

begin

seg_sel <= 6'b11_1101;

seg_data <= seg_data_1;

end

//...

4'd2:

begin

seg_sel <= 6'b11_1011;

seg_data <= seg_data_2;

end

4'd3:

begin

seg_sel <= 6'b11_0111;

seg_data <= seg_data_3;

end

4'd4:

begin

seg_sel <= 6'b10_1111;

seg_data <= seg_data_4;

end

4'd5:

begin

seg_sel <= 6'b01_1111;

seg_data <= seg_data_5;

end

default:

begin

seg_sel <= 6'b11_1111;

seg_data <= 8'hff;

end

endcase

end

end

endmodule

  7 实验结果

  下载实验程序后,可以看到数码管显示一个数字,这个数字是存储在 sd 卡中第一扇区的第一

  个数据,数据是随机的,这个时候按键 KEY1 按下,数字加一,并写入了 sd 卡,再次下载程序,

  可以看到直接显示更新后的数据。