视频ai智能分析边缘计算盒可以配备为在施工工地现场监测到违规事件时开启即时警报,视频ai智能分析边缘计算盒并伴随時间的变化收集数据,将其展示为历史时间数据图表、图形或热点图。视频ai智能分析边缘计算盒与传统的的视频监管方式对比,传统式的视频监管方式 通常必须手动式分析很多的视频流,视频ai智能分析边缘计算盒可以协助工作员在必须付诸行动时过虑有关事情并发送报警。

在CNN出现之前,对于图像的处理一直都是一个很大的问题,一方面因为图像处理的数据量太大,比如一张512 x 512的灰度图,它的输入参数就已经达到了252144个,更别说1024x1024x3之类的彩色图,这也导致了它的处理成本十分昂贵且效率极低。另一方面,图像在数字化的过程中很难保证原有的特征,这也导致了图像处理的准确率不高。

而CNN网络能够很好的解决以上两个问题。对于第一个问题,CNN网络它能够很好的将复杂的问题简单化,将大量的参数降维成少量的参数再做处理。也就是说,在大部分的场景下,我们使用降维不会影响结果。比如在日常生活中,我们用一张1024x1024x3表示鸟的彩色图和一张100x100x3表示鸟的彩色图,我们基本上都能够用肉眼辨别出这是一只鸟而不是一只狗。这也是卷积神经网络在图像分类里的一个重要应用。

视频ai智能分析边缘计算盒 CNN_人工智能

视频ai智能分析边缘计算盒还能够与人脸识别技术和身体鉴别技术相结合。当行为识别技术性鉴别当场有些人开启出现异常个人行为警报时,马上捕获面部,分析其真实身份,并将周边监控摄像头的弹出来显示屏连动,锁住其部位、追踪和精准定位。并按照其姿态、衣着等特性,开展全面的三维鉴别,使其无处可藏。

import torch
from torch import nn
from d2l import torch as d2l


class Reshape(torch.nn.Module):
    def forward(self, x):
        # 通过view函数把图像展成标准的Tensor接收格式,即(样本数量,通道数,高,宽)
        return x.view(-1, 1, 28, 28)

net = torch.nn.Sequential(
    Reshape(),
    # 第一个卷积块,这里用到了padding=2
    nn.Conv2d(1, 6, kernel_size=5, padding=2), 
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    
    # 第二个卷积块
    nn.Conv2d(6, 16, kernel_size=5), 
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    
    # 稠密块(三个全连接层)
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))

视频ai智能分析边缘计算盒接入前端第三方监控摄像头视频流数据开展分析,视频ai智能分析边缘计算盒会将分析出来的结果向三方平台推送预警信息照片、视频和警报统计数据,完成各种各样连接。适用局域网络里外移动智能终端预警信息,与此同时适用云统一操纵,完成同一监管情景的多值勤运用和多监管情景的网络技术应用。