import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.applications import vgg19
from tensorflow.keras.preprocessing import image as kp_image
from tensorflow.keras import layers
# Load and preprocess image
def load_image(img_path, max_dim=512):
img = kp_image.load_img(img_path)
img = kp_image.img_to_array(img)
img = tf.image.convert_image_dtype(img, dtype=tf.float32)
img = img[tf.newaxis, :]
return img
# Define the Style Transfer model
class StyleTransferModel(tf.keras.Model):
def __init__(self):
super(StyleTransferModel, self).__init__()
self.vgg = vgg19.VGG19(weights='imagenet', include_top=False)
self.vgg.trainable = False
def call(self, inputs):
return self.vgg(inputs)
def compute_loss(style_weight, content_weight, outputs, style_targets, content_targets):
style_outputs, content_outputs = outputs
style_loss = tf.add_n([tf.reduce_mean((style_outputs[name] - style_targets[name]) ** 2) for name in style_outputs])
content_loss = tf.add_n([tf.reduce_mean((content_outputs[name] - content_targets[name]) ** 2) for name in content_outputs])
style_loss *= style_weight / len(style_outputs)
content_loss *= content_weight / len(content_outputs)
return style_loss + content_loss
# Hyperparameters
style_weight = 1e-2
content_weight = 1e-4
epochs = 10
# Load images
style_image = load_image('style_image.jpg')
content_image = load_image('content_image.jpg')
# Define and compile the model
model = StyleTransferModel()
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.02), loss=lambda *args: compute_loss(style_weight, content_weight, *args))
# Training loop
for epoch in range(epochs):
model.fit([content_image, style_image], [style_image, content_image], epochs=1)
if (epoch + 1) % 5 == 0:
output_image = model(content_image)
output_image = np.squeeze(output_image)
output_image = (output_image + 1.0) / 2.0
plt.imshow(output_image)
plt.axis('off')
plt.savefig(f'style_transfer_image_{epoch+1}.png')
plt.close()
5. 使用Style Transfer生成图像
原创mb64cc5144d532c ©著作权
文章标签 tensorflow 文章分类 软件研发
©著作权归作者所有:来自51CTO博客作者mb64cc5144d532c的原创作品,请联系作者获取转载授权,否则将追究法律责任
提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章