import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.layers import Conv2D, Conv2DTranspose, Input
from tensorflow.keras.models import Model
def build_super_resolution_model():
inputs = Input(shape=(64, 64, 3))
x = Conv2D(64, 5, padding='same', activation='relu')(inputs)
x = Conv2D(64, 5, padding='same', activation='relu')(x)
x = Conv2D(64, 5, padding='same', activation='relu')(x)
x = Conv2DTranspose(64, 5, padding='same', activation='relu')(x)
x = Conv2DTranspose(64, 5, padding='same', activation='relu')(x)
x = Conv2D(3, 5, padding='same', activation='sigmoid')(x)
return Model(inputs, x)
# Hyperparameters
epochs = 10
batch_size = 1
# Load dataset (example)
def load_data():
# Placeholder function to load dataset
return np.random.rand(10, 64, 64, 3)
# Initialize model
model = build_super_resolution_model()
model.compile(optimizer=tf.keras.optimizers.Adam(1e-4), loss='mean_squared_error')
# Training loop
for epoch in range(epochs):
low_res_images = load_data()
high_res_images = np.random.rand(batch_size, 256, 256, 3) # Placeholder high-res images
loss = model.train_on_batch(low_res_images, high_res_images)
print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss}')
if (epoch + 1) % 5 == 0:
output_images = model.predict(low_res_images)
for i in range(batch_size):
plt.imshow(output_images[i])
plt.axis('off')
plt.savefig(f'super_resolution_image_{epoch+1}_{i}.png')
plt.close()
9. 使用Super-Resolution增强图像
原创mb64cc5144d532c ©著作权
文章标签 tensorflow 文章分类 软件研发
©著作权归作者所有:来自51CTO博客作者mb64cc5144d532c的原创作品,请联系作者获取转载授权,否则将追究法律责任
提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章
-
Learning a Deep Convolutional Network for Image Super-Resolution 超分辨开山之作
摘要我们提出了一种单图像超分辨率(SR)的深度学
深度学习 神经网络 pytorch 计算机视觉 稀疏编码