目录

一、DataX的简介

二、DataX支持的数据源

三、架构介绍

四、安装与使用

同步MySQL数据到HDFS案例

同步HDFS数据到MySQL案例


一、DataX的简介

        DataX 是阿里巴巴开源的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。

二、DataX支持的数据源

类型

数据源

Reader(读)

Writer(写)

RDBMS 关系型数据库

MySQL

Oracle

OceanBase

SQLServer

PostgreSQL

DRDS

通用RDBMS

阿里云数仓数据存储

ODPS

ADS

OSS

OCS

NoSQL数据存储

OTS

Hbase0.94

Hbase1.1

Phoenix4.x

Phoenix5.x

MongoDB

Hive

Cassandra

无结构化数据存储

TxtFile

FTP

HDFS

Elasticsearch

时间序列数据库

OpenTSDB

TSDB

三、架构介绍

1.设计

        为了解决异构数据源同步问题,DataX将复杂的网状的同步链路变成了星型数据链路,DataX作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到DataX,便能跟已有的数据源做到无缝数据同步。

datax数据源hive datax支持的数据源_数据源

2.框架

datax数据源hive datax支持的数据源_数据_02

 

 3.运行流程

datax数据源hive datax支持的数据源_数据_03

4.调度决策思路 

        用户提交了一个DataX作业,并且配置了总的并发度为20,目的是对一个有100张分表的mysql数据源进行同步。DataX的调度决策思路是:

1)DataX Job根据分库分表切分策略,将同步工作分成100个Task。

2)根据配置的总的并发度20,以及每个Task Group的并发度5,DataX计算共需要分配4个TaskGroup。

3)4个TaskGroup平分100个Task,每一个TaskGroup负责运行25个Task。

四、安装与使用

下载地址:http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz

安装解压后输入指令

python /opt/module/datax/bin/datax.py /opt/module/datax/job/job.json

出现该界面说明安装成功

datax数据源hive datax支持的数据源_datax数据源hive_04

 DataX配置文件格式

datax数据源hive datax支持的数据源_big data_05

同步MySQL数据到HDFS案例

案例要求:同步gmall数据库中base_province表数据到HDFS的/base_province目录

需求分析:要实现该功能,需选用MySQLReader和HDFSWriter,MySQLReader具有两种模式分别是TableMode和QuerySQLMode,前者使用table,column,where等属性声明需要同步的数据;后者使用一条SQL查询语句声明需要同步的数据。

1. MySQLReader之TableMode

vim /opt/module/datax/job/base_province.json

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "column": [
                            "id",
                            "name",
                            "region_id",
                            "area_code",
                            "iso_code",
                            "iso_3166_2"
                        ],
                        "where": "id>=3",
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://hadoop102:3306/gmall"
                                ],
                                "table": [
                                    "base_province"
                                ]
                            }
                        ],
                        "password": "123456",
                        "splitPk": "",
                        "username": "root"
                    }
                },
                "writer": {
                    "name": "hdfswriter",
                    "parameter": {
                        "column": [
                            {
                                "name": "id",
                                "type": "bigint"
                            },
                            {
                                "name": "name",
                                "type": "string"
                            },
                            {
                                "name": "region_id",
                                "type": "string"
                            },
                            {
                                "name": "area_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_3166_2",
                                "type": "string"
                            }
                        ],
                        "compress": "gzip",
                        "defaultFS": "hdfs://hadoop102:8020",
                        "fieldDelimiter": "\t",
                        "fileName": "base_province",
                        "fileType": "text",
                        "path": "/base_province",
                        "writeMode": "append"
                    }
                }
            }
        ],
        "setting": {
            "speed": {
                "channel": 1
            }
        }
    }
}

参数说明:

MySQLreader(TableMode):

datax数据源hive datax支持的数据源_HDFS_06

HDFSwriter:

datax数据源hive datax支持的数据源_big data_07

HFDS Writer并未提供nullFormat参数:也就是用户并不能自定义null值写到HFDS文件中的存储格式。默认情况下,HFDS Writer会将null值存储为空字符串(''),而Hive默认的null值存储格式为\N。所以后期将DataX同步的文件导入Hive表就会出现问题。
解决该问题的方案有两个:
一是修改DataX HDFS Writer的源码,增加自定义null值存储格式的逻辑,可参考。
二是在Hive中建表时指定null值存储格式为空字符串(''),例如:
DROP TABLE IF EXISTS base_province;
CREATE EXTERNAL TABLE base_province
(
    `id`         STRING COMMENT '编号',
    `name`       STRING COMMENT '省份名称',
    `region_id`  STRING COMMENT '地区ID',
    `area_code`  STRING COMMENT '地区编码',
    `iso_code`   STRING COMMENT '旧版ISO-3166-2编码,供可视化使用',
    `iso_3166_2` STRING COMMENT '新版IOS-3166-2编码,供可视化使用'
) COMMENT '省份表'
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
    NULL DEFINED AS ''
    LOCATION '/base_province/';

 setting参数:

datax数据源hive datax支持的数据源_datax数据源hive_08

在HDFS端创建文件夹

hadoop fs -mkdir /base_province

 执行命令

python bin/datax.py job/base_province.json

在客户端查看

datax数据源hive datax支持的数据源_数据源_09

2.MySQLReader(QuerySQLMode)

vim /opt/module/datax/job/base_province.json

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://hadoop102:3306/gmall"
                                ],
                                "querySql": [
                                    "select id,name,region_id,area_code,iso_code,iso_3166_2 from base_province where id>=3"
                                ]
                            }
                        ],
                        "password": "123456",
                        "username": "root"
                    }
                },
                "writer": {
                    "name": "hdfswriter",
                    "parameter": {
                        "column": [
                            {
                                "name": "id",
                                "type": "bigint"
                            },
                            {
                                "name": "name",
                                "type": "string"
                            },
                            {
                                "name": "region_id",
                                "type": "string"
                            },
                            {
                                "name": "area_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_3166_2",
                                "type": "string"
                            }
                        ],
                        "compress": "gzip",
                        "defaultFS": "hdfs://hadoop102:8020",
                        "fieldDelimiter": "\t",
                        "fileName": "base_province",
                        "fileType": "text",
                        "path": "/base_province",
                        "writeMode": "append"
                    }
                }
            }
        ],
        "setting": {
            "speed": {
                "channel": 1
            }
        }
    }
}

 参数介绍 QuerySQLMode

datax数据源hive datax支持的数据源_big data_10

执行命令

python bin/datax.py job/base_province.json

在HDFS端查看

datax数据源hive datax支持的数据源_数据_11

3.DataX传参

        通常情况下,离线数据同步任务需要每日定时重复执行,故HDFS上的目标路径通常会包含一层日期,以对每日同步的数据加以区分,也就是说每日同步数据的目标路径不是固定不变的,因此DataX配置文件中HDFS Writer的path参数的值应该是动态的。为实现这一效果,就需要使用DataX传参的功能。

        DataX传参的用法如下,在JSON配置文件中使用${param}引用参数,在提交任务时使用-p"-Dparam=value"传入参数值 

在path赋值阶段: "path": "/base_province/${dt}"
创建文件:hadoop fs -mkdir /base_province/2021-1-10
运行: python bin/datax.py -p"-Ddt=2021-1-10" job/base_province.json

结果

datax数据源hive datax支持的数据源_数据_12

同步HDFS数据到MySQL案例

        案例要求:同步HDFS上的/base_province目录下的数据到MySQL gmall 数据库下的test_province表。

        需求分析:要实现该功能,需选用HDFSReader和MySQLWriter。

vim /opt/module/datax/job/test_province.json

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "hdfsreader",
                    "parameter": {
                        "defaultFS": "hdfs://hadoop102:8020",
                        "path": "/base_province",
                        "column": [
                            "*"
                        ],
                        "fileType": "text",
                        "compress": "gzip",
                        "encoding": "UTF-8",
                        "nullFormat": "\\N",
                        "fieldDelimiter": "\t",
                    }
                },
                "writer": {
                    "name": "mysqlwriter",
                    "parameter": {
                        "username": "root",
                        "password": "123456",
                        "connection": [
                            {
                                "table": [
                                    "test_province"
                                ],
                                "jdbcUrl": "jdbc:mysql://hadoop102:3306/gmall?useUnicode=true&characterEncoding=utf-8"
                            }
                        ],
                        "column": [
                            "id",
                            "name",
                            "region_id",
                            "area_code",
                            "iso_code",
                            "iso_3166_2"
                        ],
                        "writeMode": "replace"
                    }
                }
            }
        ],
        "setting": {
            "speed": {
                "channel": 1
            }
        }
    }
}

HDFSreader参数

datax数据源hive datax支持的数据源_big data_13

MySQLwriter参数

datax数据源hive datax支持的数据源_datax数据源hive_14

 提交任务,先在MySQL中创建gmall.test_province表

DROP TABLE IF EXISTS `test_province`;
CREATE TABLE `test_province`  (
  `id` bigint(20) NOT NULL,
  `name` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `region_id` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `area_code` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `iso_code` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `iso_3166_2` varchar(20) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;

 执行命令

python bin/datax.py job/test_province.json

结果

datax数据源hive datax支持的数据源_big data_15

datax数据源hive datax支持的数据源_HDFS_16

 

DataX优化 

        1.速度优化

        DataX3.0提供了包括通道(并发)、记录流、字节流三种流控模式,可以随意控制你的作业速度,让你的作业在数据库可以承受的范围内达到最佳的同步速度。

参数

说明

job.setting.speed.channel

总并发数

job.setting.speed.record

总record限速

job.setting.speed.byte

总byte限速

core.transport.channel.speed.record

单个channel的record限速,默认值为10000(10000条/s)

core.transport.channel.speed.byte

单个channel的byte限速,默认值1024*1024(1M/s)

注意事项:

1.若配置了总record限速,则必须配置单个channel的record限速

2.若配置了总byte限速,则必须配置单个channe的byte限速

3.若配置了总record限速和总byte限速,channel并发数参数就会失效。因为配置了总record限速和总byte限速之后,实际channel并发数是通过计算得到的:

计算公式为:

min(总byte限速/单个channle的byte限速,总record限速/单个channel的record限速)

配置示例:

"core": {
        "transport": {
            "channel": {
                "speed": {
                    "byte": 1048576 //单个channel byte限速1M/s
                }
            }
        }
    },
    "job": {
        "setting": {
            "speed": {
                "byte" : 5242880 //总byte限速5M/s
            }
        },
        ...
    }
}

        2.内存调整

        当提升DataX Job内Channel并发数时,内存的占用会显著增加,因为DataX作为数据交换通道,在内存中会缓存较多的数据。例如Channel中会有一个Buffer,作为临时的数据交换的缓冲区,而在部分Reader和Writer的中,也会存在一些Buffer,为了防止OOM等错误,需调大JVM的堆内存。

        建议将内存设置为4G或者8G,这个也可以根据实际情况来调整。

        调整JVM xms xmx参数的两种方式:一种是直接更改datax.py脚本;另一种是在启动的时候,加上对应的参数,如下:

python datax/bin/datax.py --jvm="-Xms8G -Xmx8G" /path/to/your/job.json