一、背景

今日出现了mongo服务器的cpu报警,所以进行排查

二、排查步骤

1.因为是cpu升高,所以首先想到的是慢查询,监控运行情况

mongostat --host host_ip:port -uuser -ppassword --authenticationDatabase=admin

各字段解释说明:
insert/s : 官方解释是每秒插入数据库的对象数量,如果是slave,则数值前有*,则表示复制集操作
query/s : 每秒的查询操作次数
update/s : 每秒的更新操作次数
delete/s : 每秒的删除操作次数
getmore/s: 每秒查询cursor(游标)时的getmore操作数
command: 每秒执行的命令数,在主从系统中会显示两个值(例如 3|0),分表代表 本地|复制 命令
注: 一秒内执行的命令数比如批量插入,只认为是一条命令(所以意义应该不大)
dirty: 仅仅针对WiredTiger引擎,官网解释是脏数据字节的缓存百分比
used:仅仅针对WiredTiger引擎,官网解释是正在使用中的缓存百分比
flushes:
For WiredTiger引擎:指checkpoint的触发次数在一个轮询间隔期间
For MMAPv1 引擎:每秒执行fsync将数据写入硬盘的次数
注:一般都是0,间断性会是1, 通过计算两个1之间的间隔时间,可以大致了解多长时间flush一次。flush开销是很大的,如果频繁的flush,可能就要找找原因了
vsize: 虚拟内存使用量,单位MB (这是 在mongostat 最后一次调用的总数据)
res: 物理内存使用量,单位MB (这是 在mongostat 最后一次调用的总数据)
注:这个和你用top看到的一样, vsize一般不会有大的变动, res会慢慢的上升,如果res经常突然下降,去查查是否有别的程序狂吃内存。

qr: 客户端等待从MongoDB实例读数据的队列长度
qw:客户端等待从MongoDB实例写入数据的队列长度
ar: 执行读操作的活跃客户端数量
aw: 执行写操作的活客户端数量
注:如果这两个数值很大,那么就是DB被堵住了,DB的处理速度不及请求速度。看看是否有开销很大的慢查询。如果查询一切正常,确实是负载很大,就需要加机器了
netIn:MongoDB实例的网络进流量
netOut:MongoDB实例的网络出流量
注:此两项字段表名网络带宽压力,一般情况下,不会成为瓶颈
conn: 打开连接的总数,是qr,qw,ar,aw的总和
注:MongoDB为每一个连接创建一个线程,线程的创建与释放也会有开销,所以尽量要适当配置连接数的启动参数,maxIncomingConnections,阿里工程师建议在5000以下,基本满足多数场景

2.慢查询查看

use db
 db.system.profile.find({millis: {$gt:10000}}).pretty()

3.找到了对应的慢sql,然后查看对应表的对应字段是否有索引

use db
 db.col.getIndexes()

4.如果没有索引则加上索引

db.col.createIndex({"title":1})

5.查看加索引进度

> db.currentOp(
 {
 $or: [
 { op: "command", "query.createIndexes": { $exists: true } },
 { op: "insert", ns: /\.system\.indexes\b/ }
 ]
 }
 )