一、zookeeper节点的概念
Zookeeper的数据存储结构就像一棵树,这棵树由节点组成,这种节点叫做Znode。
Znode分为四种类型:
1、持久节点(presistent)
默认的节点类型。创建节点的客户端和zookeeper断开连接后,该节点依旧存在。
2、持久节点顺序节点(presistent_sequential)
所谓顺序节点,就是在创建节点时,zookeeper根据创建的时间顺序给该节点名称进行编号:
3、临时节点(ephemeral)
和持久节点相反,当创建节点的客户端与zookeeper断开连接后,临时节点会被删除:
4、临时顺序节点(ephemeral_sequential)
顾名思义:在创建节点时,zookeeper根据创建的时间顺序给该节点名称进行编号;当创建节点的客户端与zookeeper断开连接后,临时节点会被删除。
二、zookeeper分布式锁的原理
1、获取锁:
首先,在zookeeper中创建一个持久节点ParentLock。当第一个客户端想要获得锁时,需要在ParentLock这个节点下面创建一个临时顺序节点Lock1。
之后,Client1查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock1是不是顺序最靠前的一个。如果是第一个节点,则成功获得锁。
这时候,如果再有一个客户端Client2前来获取锁,则在ParentLock下再创建一个临时顺序节点Lock2。
Client2查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock2是不是顺序最靠前的一个,结果发现节点Lock2并不是最小的。于是,Client2向排序仅比它靠前的节点Lock1注册Watcher,用于监听Lock1节点是否存在。这意味着Client2抢锁失败,进入了等待状态。
这时候,如果又有一个客户端Client3前来获取锁,则在ParentLock下载再创建一个临时顺序节点Lock3。
Client3查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock3是不是顺序最靠前的一个,结果同样发现节点Lock3并不是最小的。于是,Client3向排序仅比它靠前的节点Lock2注册Watcher,用于监听Lock2节点是否存在。这意味着Client3同样抢锁失败,进入了等待状态。
这样一来,Client1得到了锁,Client2监听了Lock1,Client3监听了Lock2。这恰恰形成了一个等待队列,很像是Java当中ReentrantLock所依赖的。2、释放锁
1)第一种:任务完成,客户端显示释放。
当任务完成时,Client1会显示调用删除节点Lock1的指令。
2)任务执行过程中,客户端崩溃
获得锁的Client1在任务执行过程中,如果Duang的一声崩溃,则会断开与Zookeeper服务端的链接。根据临时节点的特性,相关联的节点Lock1会随之自动删除。
由于Client2一直监听着Lock1的存在状态,当Lock1节点被删除,Client2会立刻收到通知。这时候Client2会再次查询ParentLock下面的所有节点,确认自己创建的节点Lock2是不是目前最小的节点。如果是最小,则Client2顺理成章获得了锁。
同理,如果Client2也因为任务完成或者节点崩溃而删除了节点Lock2,那么Client3就会接到通知。
最终,Client3成功获得了锁。
三、代码方案
可以直接使用zookeeper第三方库Curator客户端,这个客户端中封装了一个可重入的锁服务。
Curator提供的InterProcessMutex是分布式锁的实现。acquire方法用户获取锁,release方法用于释放锁。
代码参考:https://github.com/apache/curator/
四、优缺点
优点:
- 有封装好的框架,易于实现。
- 有等待锁的队列,大大提升抢锁的效率。
缺点:
- 性能没有缓存服务那么高,因为每次在创建锁和释放锁的过程中,都要动态创建,销毁临时节点来实现锁功能。zookeeper创建和删除节点只能通过Leader服务器来执行,然后将数据同步到所有的Follower服务器上。
- 使用Zookeeper也有可能带来并发问题,只是并不常见而已。考虑这样的情况,由于网络抖动,客户端可ZK集群的session连接断了,那么zk以为客户端挂了,就会删除临时节点,这时候其他客户端就可以获取到分布式锁了。就可能产生并发问题。这个问题不常见是因为zk有重试机制,一旦zk集群检测不到客户端的心跳,就会重试,Curator客户端支持多种重试策略。多次重试之后还不行的话才会删除临时节点。(所以,选择一个合适的重试策略也比较重要,要在锁的粒度和并发之间找一个平衡。)