1、概念
参考:
(70条消息) 什么是光流法_张年糕慢慢走的博客_光流法
(70条消息) 计算机视觉--光流法(optical flow)简介_T-Jhon的博客_光流法
此外,还有基于均值迁移的目标追踪方法:
camshift:
(75条消息) opencv3中camshift详解(一)camshiftdemo代码详解_夏言谦的博客
meanshift:
(75条消息) Opencv——用均值平移法meanshift做目标追踪_走过,莫回头的博客
2、API
光流法:
void cv::calcOpticalFlowPyrLK ( InputArray prevImg,
InputArray nextImg,
InputArray prevPts,
InputOutputArray nextPts,
OutputArray status,
OutputArray err,
Size winSize = Size(21, 21),
int maxLevel = 3,
TermCriteria criteria
int flags = 0,
double minEigThreshold = 1e-4
)
criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01)
prevImg ——前一帧图像。
nextImg ——后一帧图像。
prevPts ——前一帧的角点vector,初始需要输入预获取的角点。
nextPts ——后一帧的角点vector
status——output status vector (of unsigned chars); each element of the vector is set to 1 if the flow for the corresponding features has been found, otherwise, it is set to 0.
err ——输出的角点的错误信息。
winSize ——光流法窗口大小。
maxLevel——光流层数,0只有1层,1为2层,以此类推
criteria ——停止条件
flags ——operation flags:
OPTFLOW_USE_INITIAL_FLOW uses initial estimations, stored in nextPts; if the flag is not set, then prevPts is copied to nextPts and is considered the initial estimate.
OPTFLOW_LK_GET_MIN_EIGENVALS use minimum eigen values as an error measure (see minEigThreshold description); if the flag is not set, then L1 distance between patches around the original and a moved point, divided by number of pixels in a window, is used as a error measure.
minEigThreshold——the algorithm calculates the minimum eigen value of a 2x2 normal matrix of optical flow equations (this matrix is called a spatial gradient matrix in [25]), divided by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding feature is filtered out and its flow is not processed, so it allows to remove bad points and get a performance boost.定义停止条件:当迭代10次不需要计算,两次的计算结果差小于0.01也不需要计算
TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 10, 0.01);
稠密光流法:
void cv::calcOpticalFlowFarneback ( InputArray prev,
InputArray next,
InputOutputArray flow,
double pyr_scale,
int levels,
int winsize,
int iterations,
int poly_n,
double poly_sigma,
int flags
)
flow——输出的光流场数据Mat_<Point2f>对象
pyr_scale——金字塔前后层大小之比,一般取0.5.
levels ——光流金字塔层数,一般取3.
iterations ——迭代次数。
poly_n ——多项式阶数 , typically poly_n =5 or 7.
poly_sigma ——standard deviation of the Gaussian that is used to smooth derivatives used as a basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a good value would be poly_sigma=1.5.
camshift:
RotatedRect cv::CamShift ( InputArray probImage,
Rect & window,
TermCriteria criteria
)
window——Initial search window.
meanshift:
int cv::meanShift ( InputArray probImage,
Rect & window,
TermCriteria criteria
)
3、代码
光流法:
void QuickDemo::shade_flow()
{
VideoCapture capture("https://vd4.bdstatic.com/mda-nm67dtz2afxmwat7/sc/cae_h264/1670390212002064886/mda-nm67dtz2afxmwat7.mp4?v_from_s=hkapp-haokan-hbf&auth_key=1670484546-0-0-792e5c9ffc23b54e025e91106b771e99&bcevod_channel=searchbox_feed&cd=0&pd=1&pt=3&logid=3546818474&vid=6396276202448861552&abtest=104960_2&klogid=3546818474");
if (capture.isOpened()) {
cout << "ok!" << endl;
}
//获取合适帧率
int fps = capture.get(CAP_PROP_FPS);
cout << "fps" << fps << endl;
Mat old_frame, old_gray;
capture.read(old_frame);
cvtColor(old_frame, old_gray, COLOR_BGR2GRAY);
//角点获取
vector<Point2f> feature_pts;
goodFeaturesToTrack(old_gray, feature_pts, 100, 0.01,10,Mat(),3,false);
Mat frame, gray;
vector<Point2f> pts[2];
pts[0].insert(pts[0].end(), feature_pts.begin(), feature_pts.end());
vector<uchar> status;
vector<float> err;
//定义停止条件,当迭代10次不需要计算,两次的计算结果差小于0.01也不需要计算
TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 10, 0.01);
while (true)
{
//capture >> frame;//尽量不用
//逐帧传入视频
bool ret = capture.read(frame);
if (!ret)break;
cvtColor(frame, gray, COLOR_BGR2GRAY);
//光流法函数
calcOpticalFlowPyrLK(old_frame, frame, pts[0], pts[1], status, err, Size(21, 21), 3, criteria, 0);
//检测是否出错
size_t i = 0, k = 0;
RNG rng(12345);
for (i = 0; i < pts[1].size(); ++i) {
//距离与状态检测
if (status[i]) {
pts[0][k] = pts[0][i];
pts[1][k++] = pts[1][i];
int b = rng.uniform(0, 255);
int g = rng.uniform(0, 255);
int r = rng.uniform(0, 255);
circle(frame, pts[1][i], 3, Scalar(b, g, r), 3, 8);
line(frame, pts[0][i], pts[1][i], Scalar(b, g, r), 3, 8);
}
}
//更新角点vector容量
pts[0].resize(k);
pts[1].resize(k);
imshow("frame", frame);
char c = waitKey(fps+10);
if (c == 27)
break;
//更换帧图像,帧角点信息
swap(pts[1], pts[0]);
swap(old_gray, gray);
}
capture.release();
}
稀疏光流法:
void QuickDemo::poor_shade_flow()
{
VideoCapture capture("https://vd4.bdstatic.com/mda-nm67dtz2afxmwat7/sc/cae_h264/1670390212002064886/mda-nm67dtz2afxmwat7.mp4?v_from_s=hkapp-haokan-hbf&auth_key=1670484546-0-0-792e5c9ffc23b54e025e91106b771e99&bcevod_channel=searchbox_feed&cd=0&pd=1&pt=3&logid=3546818474&vid=6396276202448861552&abtest=104960_2&klogid=3546818474");
if (capture.isOpened()) {
cout << "ok!" << endl;
}
//获取合适帧率
int fps = capture.get(CAP_PROP_FPS);
cout << "fps" << fps << endl;
Mat old_frame, old_gray;
capture.read(old_frame);
cvtColor(old_frame, old_gray, COLOR_BGR2GRAY);
//角点光源初始化
vector<Point2f> feature_pts;
goodFeaturesToTrack(old_gray, feature_pts, 50, 0.01, 50, Mat(), 3, false);
vector<Point2f> pts[2];
pts[0].insert(pts[0].end(), feature_pts.begin(), feature_pts.end());
vector<Point2f> initial_points;
initial_points.insert(initial_points.end(), feature_pts.begin(), feature_pts.end());
Mat frame, gray;
vector<uchar> status;
vector<float> err;
//定义停止条件,当迭代10次不需要计算,两次的计算结果差小于0.01也不需要计算
TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 10, 0.01);
while (true)
{
//capture >> frame;//尽量不用
//逐帧传入视频
bool ret = capture.read(frame);
if (!ret)break;
cvtColor(frame, gray, COLOR_BGR2GRAY);
//光流法函数
calcOpticalFlowPyrLK(old_frame, frame, pts[0], pts[1], status, err, Size(21, 21), 3, criteria, 0);
//检测是否出错
size_t i = 0, k = 0;
RNG rng(12345);
for (i = 0; i < pts[1].size(); ++i) {
//距离与状态检测
double dist = abs(pts[0][i].x - pts[1][i].x) + abs(pts[0][i].y - pts[1][i].y);
if (status[i] && dist >2) {
pts[0][k] = pts[0][i];
pts[1][k++] = pts[1][i];
initial_points[k] = initial_points[i];
int b = rng.uniform(0, 255);
int g = rng.uniform(0, 255);
int r = rng.uniform(0, 255);
circle(frame, pts[1][i], 3, Scalar(b, g, r), 3, 8);
line(frame, pts[0][i], pts[1][i], Scalar(b, g, r), 3, 8);
}
}
//更新角点vector容量
pts[0].resize(k);
pts[1].resize(k);
initial_points.resize(k);
//绘制跟踪线
draw_line(frame,pts[0],pts[1]);
imshow("frame", frame);
char c = waitKey(fps + 10);
if (c == 27)
break;
//更换帧图像,帧角点信息
swap(pts[1], pts[0]);
swap(old_gray, gray);
//在稀疏光源法还要重新初始化,当角点数小于40时,重新初始化
if (pts[0].size()<40) {
goodFeaturesToTrack(old_gray, feature_pts, 50, 0.01, 50, Mat(), 3, false);
pts[0].insert(pts[0].end(), feature_pts.begin(), feature_pts.end());
initial_points.insert(initial_points.end(), feature_pts.begin(), feature_pts.end());
}
}
capture.release();
}
void QuickDemo::draw_line(Mat& image, vector<Point2f> pts1, vector<Point2f> pts2)
{
vector<Scalar>lut;
RNG rng(12345);
for (auto i = 0; i < pts1.size(); ++i) {
int b = rng.uniform(0, 255);
int g = rng.uniform(0, 255);
int r = rng.uniform(0, 255);
lut.push_back(Scalar(b, g, r));
}
for (auto i = 0; i < pts1.size(); ++i) {
line(image, pts1[i], pts2[i], Scalar(255, 0, 0), 2, 8);
}
}
稠密光流法:
void QuickDemo::dense_shade_flow()
{
VideoCapture capture("https://vd4.bdstatic.com/mda-nm67dtz2afxmwat7/sc/cae_h264/1670390212002064886/mda-nm67dtz2afxmwat7.mp4?v_from_s=hkapp-haokan-hbf&auth_key=1670484546-0-0-792e5c9ffc23b54e025e91106b771e99&bcevod_channel=searchbox_feed&cd=0&pd=1&pt=3&logid=3546818474&vid=6396276202448861552&abtest=104960_2&klogid=3546818474");
if (!capture.isOpened())
cout << "error" << endl;
namedWindow("frame", WINDOW_FREERATIO);
namedWindow("result", WINDOW_FREERATIO);
int fps = capture.get(CAP_PROP_FPS);
//定义当前帧,前一帧,并灰度转换
Mat frame, preframe;
Mat gray, pregray;
capture.read(preframe);
cvtColor(preframe, pregray, COLOR_BGR2GRAY);
Mat hsv = Mat::zeros(preframe.size(), preframe.type());
Mat mag = Mat::zeros(hsv.size(), CV_32FC1);
Mat ang = Mat::zeros(hsv.size(), CV_32FC1);
Mat xpts = Mat::zeros(hsv.size(), CV_32FC1);
Mat ypts = Mat::zeros(hsv.size(), CV_32FC1);
//输出光流场数据空间定义
Mat_<Point2f> flow;
//通道拆分
vector<Mat> mv;
split(hsv, mv);
Mat bgr;
while (true) {
bool ret = capture.read(frame);
char c = waitKey(fps + 5);
if (c == 27)break;
cvtColor(frame, gray, COLOR_BGR2GRAY);
calcOpticalFlowFarneback(pregray, gray, flow, 0.5, 3, 15, 3, 5, 1.2, 0);
for (int row = 0; row < flow.rows; ++row) {
for (int col = 0; col < flow.cols; ++col) {
const Point2f& flow_xy = flow.at<Point2f>(row, col);
//取出对应x、y方向的光流场数据
xpts.at<float>(row, col) = flow_xy.x;
ypts.at<float>(row, col) = flow_xy.y;
}
}
//转极坐标空间,并归一化到(0,255)
cartToPolar(xpts, ypts, mag, ang);
ang = ang * 180 / CV_PI/2.0;
normalize(mag, mag, 0, 255, NORM_MINMAX);
//绝对值处理
convertScaleAbs(mag, mag);
convertScaleAbs(ang,ang);
//各通道图像更新,并融合通道
mv[0] = ang;
mv[1] = Scalar(255);
mv[2] = mag;
merge(mv, hsv);
cvtColor(hsv, bgr, COLOR_HSV2BGR);
imshow("frame", frame);
imshow("result", bgr);
}
capture.release();
}
meanshift(camshift类似):
void QuickDemo::meanshift_demo()
{
VideoCapture capture("https://vd2.bdstatic.com/mda-kfnppaw9yfdzk3kt/v1-cae/sc/mda-kfnppaw9yfdzk3kt.mp4?v_from_s=hkapp-haokan-hbf&auth_key=1670502387-0-0-eca212d3f2910d53f98303c63ae9ffea&bcevod_channel=searchbox_feed&cd=0&pd=1&pt=3&logid=3387437100&vid=9716606416298726566&abtest=104960_2-106506_2&klogid=3387437100");
if (!capture.isOpened())
cout << "error" << endl;
namedWindow("meanshift", WINDOW_FREERATIO);
int fps = capture.get(CAP_PROP_FPS);
//在hsv格式进行反向投影
Mat frame, hsv, hue, mask, hist, backproj;
capture.read(frame);
bool istrack = true;
Rect track_window;
//直方图
int hsize = 16;
float h_range[] = { 0,180 };
const float* ranges = h_range;
//手动ROI框选的API调用
Rect select = selectROI("meanshift", frame, true, false);
while (true) {
bool ret = capture.read(frame);
char c = waitKey(fps + 5);
if (c == 27)break;
cvtColor(frame, hsv, COLOR_BGR2HSV);
inRange(hsv, Scalar(170, 110, 30), Scalar(182, 150, 60), mask);
//imshow("hsv", hsv);
int ch[] = { 0,0 };
hue.create(hsv.size(), hsv.depth());
mixChannels(&hsv, 1, &hue,1,ch,1);
if (istrack) {
Mat roi(hue, select), maskroi(mask, select);
calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &ranges);
normalize(hist, hist, 0, 255, NORM_MINMAX);
track_window = select;
istrack = false;
}
//meanshift
calcBackProject(&hue, 1, 0, hist, backproj, &ranges);
backproj &= mask;
meanShift(backproj, track_window, TermCriteria(TermCriteria::COUNT | TermCriteria::EPS, 10, 0.1));
rectangle(frame, track_window, Scalar(0, 0, 255), 3, LINE_AA);
imshow("meanshift", frame);
}
capture.release();
}