前言

嗨喽,大家好呀~这里是爱看美女的茜茜呐

python给视频去除字幕 python去除视频水印_开发语言

开发环境:

  • 解释器版本: python 3.8
  • 代码编辑器: pycharm 2021.2

模块使用:

内置模块(无需安装)

  • os —> python系统编程的操作模块,提供了非常丰富的功能去处理文件和目录
  • sys —> 是与Python解释器交互的桥梁
  • cv2 —> 流行的开源计算机视觉库,提供了丰富的图像和视频处理功能

第三方模块

  • numpy —> 用于数值计算的基础模块,支持大量的维度数值与矩阵计算
  • moviepy —> 用于视频剪辑、合成和处理

第三方模块安装:

  1. win + R 输入 cmd 点击确定, 输入安装命令 pip install 模块名 (pip install requests) 回车
  2. 在pycharm中点击Terminal(终端) 输入安装命令

模块可能安装失败原因:出现大量报红 (read time out)

解决方法: 因为是网络链接超时, 需要切换镜像源

可使用镜像源例举:

  1. 清华:https://pypi.tuna.tsinghua.edu.cn/simple
  2. 中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
  3. 华中理工大学:https://pypi.hustunique.com/
  4. 山东理工大学:https://pypi.sdutlinux.org/

例如:pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple/ 模块名


👇 👇 👇 更多精彩机密、教程,尽在下方,赶紧点击了解吧~

素材、视频教程、完整代码、插件安装教程我都准备好了,直接在文末名片自取就可


代码展示

导入模块

import os
import sys

import cv2
import numpy
from moviepy import editor
VIDEO_PATH = 'video'
OUTPUT_PATH = 'output'
TEMP_VIDEO = 'temp.mp4'


class WatermarkRemover():

    def __init__(self, threshold: int, kernel_size: int):
        self.threshold = threshold  # 阈值分割所用阈值
        self.kernel_size = kernel_size  # 膨胀运算核尺寸

    def select_roi(self, img: numpy.ndarray, hint: str) -> list:

框选水印或字幕位置,SPACE或ENTER键退出

:param img: 显示图片

:return: 框选区域坐标

COFF = 0.7
        w, h = int(COFF * img.shape[1]), int(COFF * img.shape[0])
        resize_img = cv2.resize(img, (w, h))
        roi = cv2.selectROI(hint, resize_img, False, False)
        cv2.destroyAllWindows()
        watermark_roi = [int(roi[0] / COFF), int(roi[1] / COFF), int(roi[2] / COFF), int(roi[3] / COFF)]
        return watermark_roi

    def dilate_mask(self, mask: numpy.ndarray) -> numpy.ndarray:

对蒙版进行膨胀运算

:param mask: 蒙版图片

:return: 膨胀处理后蒙版

kernel = numpy.ones((self.kernel_size, self.kernel_size), numpy.uint8)
        mask = cv2.dilate(mask, kernel)
        return mask

    def generate_single_mask(self, img: numpy.ndarray, roi: list, threshold: int) -> numpy.ndarray:

通过手动选择的ROI区域生成单帧图像的水印蒙版

:param img: 单帧图像

:param roi: 手动选择区域坐标

:param threshold: 二值化阈值

:return: 水印蒙版

# 区域无效,程序退出
        if len(roi) != 4:
            print('NULL ROI!')
            sys.exit()

        # 复制单帧灰度图像ROI内像素点
        roi_img = numpy.zeros((img.shape[0], img.shape[1]), numpy.uint8)
        start_x, end_x = int(roi[1]), int(roi[1] + roi[3])
        start_y, end_y = int(roi[0]), int(roi[0] + roi[2])
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        roi_img[start_x:end_x, start_y:end_y] = gray[start_x:end_x, start_y:end_y]

        # 阈值分割
        _, mask = cv2.threshold(roi_img, threshold, 255, cv2.THRESH_BINARY)
        return mask

    def generate_watermark_mask(self, video_path: str) -> numpy.ndarray:

截取视频中多帧图像生成多张水印蒙版,通过逻辑与计算生成最终水印蒙版

:param video_path: 视频文件路径

:return: 水印蒙版

video = cv2.VideoCapture(video_path)
        success, frame = video.read()
        roi = self.select_roi(frame, 'select watermark ROI')
        mask = numpy.ones((frame.shape[0], frame.shape[1]), numpy.uint8)
        mask.fill(255)

        step = video.get(cv2.CAP_PROP_FRAME_COUNT) // 5
        index = 0
        while success:
            if index % step == 0:
                mask = cv2.bitwise_and(mask, self.generate_single_mask(frame, roi, self.threshold))
            success, frame = video.read()
            index += 1
        video.release()

        return self.dilate_mask(mask)

    def generate_subtitle_mask(self, frame: numpy.ndarray, roi: list) -> numpy.ndarray:

通过手动选择ROI区域生成单帧图像字幕蒙版

:param frame: 单帧图像

:param roi: 手动选择区域坐标

:return: 字幕蒙版

mask = self.generate_single_mask(frame, [0, roi[1], frame.shape[1], roi[3]], self.threshold)  # 仅使用ROI横坐标区域
        return self.dilate_mask(mask)

    def inpaint_image(self, img: numpy.ndarray, mask: numpy.ndarray) -> numpy.ndarray:

修复图像

:param img: 单帧图像

:parma mask: 蒙版

:return: 修复后图像

telea = cv2.inpaint(img, mask, 1, cv2.INPAINT_TELEA)
        return telea

    def merge_audio(self, input_path: str, output_path: str, temp_path: str):

合并音频与处理后视频

:param input_path: 原视频文件路径

:param output_path: 封装音视频后文件路径

:param temp_path: 无声视频文件路径

with editor.VideoFileClip(input_path) as video:
            audio = video.audio
            with editor.VideoFileClip(temp_path) as opencv_video:
                clip = opencv_video.set_audio(audio)
                clip.to_videofile(output_path)

    def remove_video_watermark(self):

去除视频水印

if not os.path.exists(OUTPUT_PATH):
            os.makedirs(OUTPUT_PATH)

        filenames = [os.path.join(VIDEO_PATH, i) for i in os.listdir(VIDEO_PATH)]
        mask = None

        for i, name in enumerate(filenames):
            if i == 0:
                # 生成水印蒙版
                mask = self.generate_watermark_mask(name)

            # 创建待写入文件对象
            video = cv2.VideoCapture(name)
            fps = video.get(cv2.CAP_PROP_FPS)
            size = (int(video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)))
            video_writer = cv2.VideoWriter(TEMP_VIDEO, cv2.VideoWriter_fourcc(*'mp4v'), fps, size)

            # 逐帧处理图像
            success, frame = video.read()

            while success:
                frame = self.inpaint_image(frame, mask)
                video_writer.write(frame)
                success, frame = video.read()

            video.release()
            video_writer.release()

            # 封装视频
            (_, filename) = os.path.split(name)
            output_path = os.path.join(OUTPUT_PATH, filename.split('.')[0] + '_no_watermark.mp4')  # 输出文件路径
            self.merge_audio(name, output_path, TEMP_VIDEO)

    if os.path.exists(TEMP_VIDEO):
        os.remove(TEMP_VIDEO)

    def remove_video_subtitle(self):

去除视频字幕

if not os.path.exists(OUTPUT_PATH):
            os.makedirs(OUTPUT_PATH)

        filenames = [os.path.join(VIDEO_PATH, i) for i in os.listdir(VIDEO_PATH)]
        roi = []

        for i, name in enumerate(filenames):
            # 创建待写入文件对象
            video = cv2.VideoCapture(name)
            fps = video.get(cv2.CAP_PROP_FPS)
            size = (int(video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)))
            video_writer = cv2.VideoWriter(TEMP_VIDEO, cv2.VideoWriter_fourcc(*'mp4v'), fps, size)

            # 逐帧处理图像
            success, frame = video.read()
            if i == 0:
                roi = self.select_roi(frame, 'select subtitle ROI')

            while success:
                mask = self.generate_subtitle_mask(frame, roi)
                frame = self.inpaint_image(frame, mask)
                video_writer.write(frame)
                success, frame = video.read()

            video.release()
            video_writer.release()

            # 封装视频
            (_, filename) = os.path.split(name)
            output_path = os.path.join(OUTPUT_PATH, filename.split('.')[0] + '_no_sub.mp4')  # 输出文件路径
            self.merge_audio(name, output_path, TEMP_VIDEO)

        if os.path.exists(TEMP_VIDEO):
            os.remove(TEMP_VIDEO)


if __name__ == '__main__':
    sel=input('1:去水印, 2:去字幕\n')
    if sel=='1':
        remover = WatermarkRemover(threshold=80, kernel_size=5)
        remover.remove_video_watermark()
    if sel=='2':
        remover = WatermarkRemover(threshold=80, kernel_size=5)
        remover.remove_video_subtitle()