前言
嗨喽,大家好呀~这里是爱看美女的茜茜呐
开发环境:
- 解释器版本: python 3.8
- 代码编辑器: pycharm 2021.2
模块使用:
内置模块(无需安装)
- os —> python系统编程的操作模块,提供了非常丰富的功能去处理文件和目录
- sys —> 是与Python解释器交互的桥梁
- cv2 —> 流行的开源计算机视觉库,提供了丰富的图像和视频处理功能
第三方模块
- numpy —> 用于数值计算的基础模块,支持大量的维度数值与矩阵计算
- moviepy —> 用于视频剪辑、合成和处理
第三方模块安装:
- win + R 输入 cmd 点击确定, 输入安装命令 pip install 模块名 (pip install requests) 回车
- 在pycharm中点击Terminal(终端) 输入安装命令
模块可能安装失败原因:出现大量报红 (read time out)
解决方法: 因为是网络链接超时, 需要切换镜像源
可使用镜像源例举:
- 清华:https://pypi.tuna.tsinghua.edu.cn/simple
- 中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
- 华中理工大学:https://pypi.hustunique.com/
- 山东理工大学:https://pypi.sdutlinux.org/
例如:pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple/ 模块名
👇 👇 👇 更多精彩机密、教程,尽在下方,赶紧点击了解吧~
素材、视频教程、完整代码、插件安装教程我都准备好了,直接在文末名片自取就可
代码展示
导入模块
import os
import sys
import cv2
import numpy
from moviepy import editor
VIDEO_PATH = 'video'
OUTPUT_PATH = 'output'
TEMP_VIDEO = 'temp.mp4'
class WatermarkRemover():
def __init__(self, threshold: int, kernel_size: int):
self.threshold = threshold # 阈值分割所用阈值
self.kernel_size = kernel_size # 膨胀运算核尺寸
def select_roi(self, img: numpy.ndarray, hint: str) -> list:
框选水印或字幕位置,SPACE或ENTER键退出
:param img
: 显示图片
:return
: 框选区域坐标
COFF = 0.7
w, h = int(COFF * img.shape[1]), int(COFF * img.shape[0])
resize_img = cv2.resize(img, (w, h))
roi = cv2.selectROI(hint, resize_img, False, False)
cv2.destroyAllWindows()
watermark_roi = [int(roi[0] / COFF), int(roi[1] / COFF), int(roi[2] / COFF), int(roi[3] / COFF)]
return watermark_roi
def dilate_mask(self, mask: numpy.ndarray) -> numpy.ndarray:
对蒙版进行膨胀运算
:param mask
: 蒙版图片
:return
: 膨胀处理后蒙版
kernel = numpy.ones((self.kernel_size, self.kernel_size), numpy.uint8)
mask = cv2.dilate(mask, kernel)
return mask
def generate_single_mask(self, img: numpy.ndarray, roi: list, threshold: int) -> numpy.ndarray:
通过手动选择的ROI区域生成单帧图像的水印蒙版
:param img
: 单帧图像
:param roi
: 手动选择区域坐标
:param threshold
: 二值化阈值
:return
: 水印蒙版
# 区域无效,程序退出
if len(roi) != 4:
print('NULL ROI!')
sys.exit()
# 复制单帧灰度图像ROI内像素点
roi_img = numpy.zeros((img.shape[0], img.shape[1]), numpy.uint8)
start_x, end_x = int(roi[1]), int(roi[1] + roi[3])
start_y, end_y = int(roi[0]), int(roi[0] + roi[2])
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
roi_img[start_x:end_x, start_y:end_y] = gray[start_x:end_x, start_y:end_y]
# 阈值分割
_, mask = cv2.threshold(roi_img, threshold, 255, cv2.THRESH_BINARY)
return mask
def generate_watermark_mask(self, video_path: str) -> numpy.ndarray:
截取视频中多帧图像生成多张水印蒙版,通过逻辑与计算生成最终水印蒙版
:param video_path
: 视频文件路径
:return
: 水印蒙版
video = cv2.VideoCapture(video_path)
success, frame = video.read()
roi = self.select_roi(frame, 'select watermark ROI')
mask = numpy.ones((frame.shape[0], frame.shape[1]), numpy.uint8)
mask.fill(255)
step = video.get(cv2.CAP_PROP_FRAME_COUNT) // 5
index = 0
while success:
if index % step == 0:
mask = cv2.bitwise_and(mask, self.generate_single_mask(frame, roi, self.threshold))
success, frame = video.read()
index += 1
video.release()
return self.dilate_mask(mask)
def generate_subtitle_mask(self, frame: numpy.ndarray, roi: list) -> numpy.ndarray:
通过手动选择ROI区域生成单帧图像字幕蒙版
:param frame
: 单帧图像
:param roi
: 手动选择区域坐标
:return
: 字幕蒙版
mask = self.generate_single_mask(frame, [0, roi[1], frame.shape[1], roi[3]], self.threshold) # 仅使用ROI横坐标区域
return self.dilate_mask(mask)
def inpaint_image(self, img: numpy.ndarray, mask: numpy.ndarray) -> numpy.ndarray:
修复图像
:param img
: 单帧图像
:parma mask
: 蒙版
:return
: 修复后图像
telea = cv2.inpaint(img, mask, 1, cv2.INPAINT_TELEA)
return telea
def merge_audio(self, input_path: str, output_path: str, temp_path: str):
合并音频与处理后视频
:param input_path
: 原视频文件路径
:param output_path
: 封装音视频后文件路径
:param temp_path
: 无声视频文件路径
with editor.VideoFileClip(input_path) as video:
audio = video.audio
with editor.VideoFileClip(temp_path) as opencv_video:
clip = opencv_video.set_audio(audio)
clip.to_videofile(output_path)
def remove_video_watermark(self):
去除视频水印
if not os.path.exists(OUTPUT_PATH):
os.makedirs(OUTPUT_PATH)
filenames = [os.path.join(VIDEO_PATH, i) for i in os.listdir(VIDEO_PATH)]
mask = None
for i, name in enumerate(filenames):
if i == 0:
# 生成水印蒙版
mask = self.generate_watermark_mask(name)
# 创建待写入文件对象
video = cv2.VideoCapture(name)
fps = video.get(cv2.CAP_PROP_FPS)
size = (int(video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)))
video_writer = cv2.VideoWriter(TEMP_VIDEO, cv2.VideoWriter_fourcc(*'mp4v'), fps, size)
# 逐帧处理图像
success, frame = video.read()
while success:
frame = self.inpaint_image(frame, mask)
video_writer.write(frame)
success, frame = video.read()
video.release()
video_writer.release()
# 封装视频
(_, filename) = os.path.split(name)
output_path = os.path.join(OUTPUT_PATH, filename.split('.')[0] + '_no_watermark.mp4') # 输出文件路径
self.merge_audio(name, output_path, TEMP_VIDEO)
if os.path.exists(TEMP_VIDEO):
os.remove(TEMP_VIDEO)
def remove_video_subtitle(self):
去除视频字幕
if not os.path.exists(OUTPUT_PATH):
os.makedirs(OUTPUT_PATH)
filenames = [os.path.join(VIDEO_PATH, i) for i in os.listdir(VIDEO_PATH)]
roi = []
for i, name in enumerate(filenames):
# 创建待写入文件对象
video = cv2.VideoCapture(name)
fps = video.get(cv2.CAP_PROP_FPS)
size = (int(video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)))
video_writer = cv2.VideoWriter(TEMP_VIDEO, cv2.VideoWriter_fourcc(*'mp4v'), fps, size)
# 逐帧处理图像
success, frame = video.read()
if i == 0:
roi = self.select_roi(frame, 'select subtitle ROI')
while success:
mask = self.generate_subtitle_mask(frame, roi)
frame = self.inpaint_image(frame, mask)
video_writer.write(frame)
success, frame = video.read()
video.release()
video_writer.release()
# 封装视频
(_, filename) = os.path.split(name)
output_path = os.path.join(OUTPUT_PATH, filename.split('.')[0] + '_no_sub.mp4') # 输出文件路径
self.merge_audio(name, output_path, TEMP_VIDEO)
if os.path.exists(TEMP_VIDEO):
os.remove(TEMP_VIDEO)
if __name__ == '__main__':
sel=input('1:去水印, 2:去字幕\n')
if sel=='1':
remover = WatermarkRemover(threshold=80, kernel_size=5)
remover.remove_video_watermark()
if sel=='2':
remover = WatermarkRemover(threshold=80, kernel_size=5)
remover.remove_video_subtitle()