Pandas 是一个非常流行的 Python 数据操作库。学习怎样使用它的 API 绘制数据。
- 作者:Shaun Taylor-morgan
- 译者:geekpi
(本文字数:2238,阅读时长大约:2 分钟)
在有关基于 Python 的绘图库的系列文章中,我们将对使用 Pandas 这个非常流行的 Python 数据操作库进行绘图进行概念性的研究。Pandas 是 Python 中的标准工具,用于对进行数据可扩展的转换,它也已成为从 CSV 和 Excel 格式导入和导出数据的流行方法。
除此之外,它还包含一个非常好的绘图 API。这非常方便,你已将数据存储在 Pandas DataFrame 中,那么为什么不使用相同的库进行绘制呢?
在本系列中,我们将在每个库中制作相同的多条形柱状图,以便我们可以比较它们的工作方式。我们使用的数据是 1966 年至 2020 年的英国大选结果:
Matplotlib UK election results
自行绘制的数据
在继续之前,请注意你可能需要调整 Python 环境来运行此代码,包括:
- 运行最新版本的 Python(用于 Linux、Mac 和 Windows 的说明)
- 确认你运行的是与这些库兼容的 Python 版本
数据可在线获得,并可使用 Pandas 导入:
import pandas as pd
df = pd.read_csv('https://anvil.works/blog/img/plotting-in-python/uk-election-results.csv')
现在我们已经准备好了。在本系列文章中,我们已经看到了一些令人印象深刻的简单 API,但是 Pandas 一定能夺冠。
要在 x 轴上绘制按年份和每个党派分组的柱状图,我只需要这样做:
import matplotlib.pyplot as plt
ax = df.plot.bar(x='year')
plt.show()
只有四行,这绝对是我们在本系列中创建的最棒的多条形柱状图。
我以宽格式使用数据,这意味着每个党派都有一列:
year conservative labour liberal others
0 1966 253 364 12 1
1 1970 330 287 6 7
2 Feb 1974 297 301 14 18
.. ... ... ... ... ...
12 2015 330 232 8 80
13 2017 317 262 12 59
14 2019 365 202 11 72
这意味着 Pandas 会自动知道我希望如何分组,如果我希望进行不同的分组,Pandas 可以很容易地重组 DataFrame。
与 Seaborn 一样,Pandas 的绘图功能是 Matplotlib 之上的抽象,这就是为什么要调用 Matplotlib 的 plt.show()
函数来实际生成绘图的原因。
看起来是这样的:
pandas unstyled data plot
看起来很棒,特别是它又这么简单!让我们对它进行样式设置,使其看起来像 Matplotlib 的例子。
调整样式
我们可以通过访问底层的 Matplotlib 方法轻松地调整样式。
首先,我们可以通过将 Matplotlib 颜色表传递到绘图函数来为柱状图着色:
from matplotlib.colors import ListedColormap
cmap = ListedColormap(['#0343df', '#e50000', '#ffff14', '#929591'])
ax = df.plot.bar(x='year', colormap=cmap)
我们可以使用绘图函数的返回值设置坐标轴标签和标题,它只是一个 Matplotlib 的 Axis 对象。
ax.set_xlabel(None)
ax.set_ylabel('Seats')
ax.set_title('UK election results')
这是现在的样子:
pandas styled plot
这与上面的 Matplotlib 版本几乎相同,但是只用了 8 行代码而不是 16 行!我内心的代码高手非常高兴。
抽象必须是可转义的
与 Seaborn 一样,向下访问 Matplotlib API 进行细节调整的能力确实很有帮助。这是给出抽象紧急出口使其既强大又简单的一个很好的例子。