1. 梯度下降算法
- 随机梯度下降
随机梯度下降(SGD) 是一种简单但又非常高效的方法,主要用于凸损失函数下线性分类器的判别式学习,例如(线性) 支持向量机 和 Logistic 回归 。 尽管 SGD 在机器学习社区已经存在了很长时间, 但是最近在 large-scale learning (大规模学习)方面 SGD 获得了相当大的关注。
(随机梯度下降法)的优势:
高效。 易于实现 (有大量优化代码的机会)。
(随机梯度下降法)的劣势:
SGD 需要一些超参数,例如 regularization (正则化)参数和 number of iterations (迭代次数)。 SGD 对 feature scaling (特征缩放)敏感。
- 动量梯度下降
mini-batch梯度下降法
在实际应用中,由于样本数量庞大,训练数据上百万是很常见的事。如果每执行一次梯度下降就遍历整个训练样本将会耗费大量的计算机资源。在所有样本中随机抽取一部分(mini-batch)样本,抽取的样本的分布规律与原样本基本相同,事实发现,实际训练中使用mini-batch梯度下降法可以大大加快训练速度。
mini-batch梯度下降法的思想很简单,将样本总体分成多个mini-batch。例如100万的数据,分成10000份,每份包含100个数据的mini-batch-1到mini-batch-10000,每次梯度下降使用其中一个mini-batch进行训练,除此之外和梯度下降法没有任何区别。
由于mini-batch每次仅使用数据集中的一部分进行梯度下降,所以每次下降并不是严格按照朝最小方向下降,但是总体下降趋势是朝着最小方向,上图可以明显看出两者之间的区别。
对右边的图来说,动量梯度下降法并没有什么用处。梯度批量下降法主要是针对mini-batch梯度下降法进行优化,优化之后左右的摆动减小,从而提高效率。优化前后的对比如下图,可见动量梯度下降法的摆动明显减弱。
3. Adam
2.激活函数
3. 网络初始化
4.批归一化
(详细分析)
以前在神经网络训练中,只是对输入层数据进行归一化处理,却没有在中间层进行归一化处理。要知道,虽然我们对输入数据进行了归一化处理,但是输入数据经过σ(WX+b) σ(WX+b)σ(WX+b)这样的矩阵乘法以及非线性运算之后,其数据分布很可能被改变,而随着深度网络的多层运算之后,数据分布的变化将越来越大。如果我们能在网络的中间也进行归一化处理,是否对网络的训练起到改进作用呢?答案是肯定的。
这种在神经网络中间层也进行归一化处理,使训练效果更好的方法,就是批归一化Batch Normalization(BN)。BN在神经网络训练中会有以下一些作用:
加快训练速度 可以省去dropout,L1, L2等正则化处理方法 提高模型训练精度