#1.第一步,导包
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from pylab import mpl
#修改字符集
mpl.rcParams['font.sans-serif'] = ['SimHei']
mpl.rcParams['axes.unicode_minus'] = False

from datetime import datetime
#这是matplotlib的第二个模块,可以在绘图时同时进行numpy计算
import pylab as pl
#这是对matplotlib的高级封装
import seaborn as sn
#这是日历包
import calendar
#2、数据采集/观察与预处理
#2.1 数据读取
bikedata = pd.read_csv("train.csv")
print(bikedata)
datetime  season  holiday  workingday  casual  registered  \
0         2011/1/1 0:00       1        0           0       3          13   
1         2011/1/1 1:00       1        0           0       8          32   
2         2011/1/1 2:00       1        0           0       5          27   
3         2011/1/1 3:00       1        0           0       3          10   
4         2011/1/1 4:00       1        0           0       0           1   
5         2011/1/1 5:00       1        0           0       0           1   
6         2011/1/1 6:00       1        0           0       2           0   
7         2011/1/1 7:00       1        0           0       1           2   
8         2011/1/1 8:00       1        0           0       1           7   
9         2011/1/1 9:00       1        0           0       8           6   
10       2011/1/1 10:00       1        0           0      12          24   
11       2011/1/1 11:00       1        0           0      26          30   
12       2011/1/1 12:00       1        0           0      29          55   
13       2011/1/1 13:00       1        0           0      47          47   
14       2011/1/1 14:00       1        0           0      35          71   
15       2011/1/1 15:00       1        0           0      40          70   
16       2011/1/1 16:00       1        0           0      41          52   
17       2011/1/1 17:00       1        0           0      15          52   
18       2011/1/1 18:00       1        0           0       9          26   
19       2011/1/1 19:00       1        0           0       6          31   
20       2011/1/1 20:00       1        0           0      11          25   
21       2011/1/1 21:00       1        0           0       3          31   
22       2011/1/1 22:00       1        0           0      11          17   
23       2011/1/1 23:00       1        0           0      15          24   
24        2011/1/2 0:00       1        0           0       4          13   
25        2011/1/2 1:00       1        0           0       1          16   
26        2011/1/2 2:00       1        0           0       1           8   
27        2011/1/2 3:00       1        0           0       2           4   
28        2011/1/2 4:00       1        0           0       2           1   
29        2011/1/2 6:00       1        0           0       0           2   
...                 ...     ...      ...         ...     ...         ...   
10856  2012/12/18 18:00       4        0           1      13         512   
10857  2012/12/18 19:00       4        0           1      19         334   
10858  2012/12/18 20:00       4        0           1       4         264   
10859  2012/12/18 21:00       4        0           1       9         159   
10860  2012/12/18 22:00       4        0           1       5         127   
10861  2012/12/18 23:00       4        0           1       1          80   
10862   2012/12/19 0:00       4        0           1       6          35   
10863   2012/12/19 1:00       4        0           1       1          14   
10864   2012/12/19 2:00       4        0           1       1           2   
10865   2012/12/19 3:00       4        0           1       0           5   
10866   2012/12/19 4:00       4        0           1       1           6   
10867   2012/12/19 5:00       4        0           1       2          29   
10868   2012/12/19 6:00       4        0           1       3         109   
10869   2012/12/19 7:00       4        0           1       3         360   
10870   2012/12/19 8:00       4        0           1      13         665   
10871   2012/12/19 9:00       4        0           1       8         309   
10872  2012/12/19 10:00       4        0           1      17         147   
10873  2012/12/19 11:00       4        0           1      31         169   
10874  2012/12/19 12:00       4        0           1      33         203   
10875  2012/12/19 13:00       4        0           1      30         183   
10876  2012/12/19 14:00       4        0           1      33         185   
10877  2012/12/19 15:00       4        0           1      28         209   
10878  2012/12/19 16:00       4        0           1      37         297   
10879  2012/12/19 17:00       4        0           1      26         536   
10880  2012/12/19 18:00       4        0           1      23         546   
10881  2012/12/19 19:00       4        0           1       7         329   
10882  2012/12/19 20:00       4        0           1      10         231   
10883  2012/12/19 21:00       4        0           1       4         164   
10884  2012/12/19 22:00       4        0           1      12         117   
10885  2012/12/19 23:00       4        0           1       4          84   

       count  
0         16  
1         40  
2         32  
3         13  
4          1  
5          1  
6          2  
7          3  
8          8  
9         14  
10        36  
11        56  
12        84  
13        94  
14       106  
15       110  
16        93  
17        67  
18        35  
19        37  
20        36  
21        34  
22        28  
23        39  
24        17  
25        17  
26         9  
27         6  
28         3  
29         2  
...      ...  
10856    525  
10857    353  
10858    268  
10859    168  
10860    132  
10861     81  
10862     41  
10863     15  
10864      3  
10865      5  
10866      7  
10867     31  
10868    112  
10869    363  
10870    678  
10871    317  
10872    164  
10873    200  
10874    236  
10875    213  
10876    218  
10877    237  
10878    334  
10879    562  
10880    569  
10881    336  
10882    241  
10883    168  
10884    129  
10885     88  

[10886 rows x 7 columns]
#2.2数据查看
print("数据描述")
print(bikedata.describe())#数据描述
print("数据的大小")
print(bikedata.shape)#数据大小
print("数据的前五行")
print(bikedata.head())#查看数据的前五行
print("数据的后五行")
print(bikedata.tail())#查看数据的后五行
print("数据的类型")
print(bikedata.dtypes)#查看数据的类型
数据描述
             season       holiday    workingday        casual    registered  \
count  10886.000000  10886.000000  10886.000000  10886.000000  10886.000000   
mean       2.506614      0.028569      0.680875     36.021955    155.552177   
std        1.116174      0.166599      0.466159     49.960477    151.039033   
min        1.000000      0.000000      0.000000      0.000000      0.000000   
25%        2.000000      0.000000      0.000000      4.000000     36.000000   
50%        3.000000      0.000000      1.000000     17.000000    118.000000   
75%        4.000000      0.000000      1.000000     49.000000    222.000000   
max        4.000000      1.000000      1.000000    367.000000    886.000000   

              count  
count  10886.000000  
mean     191.574132  
std      181.144454  
min        1.000000  
25%       42.000000  
50%      145.000000  
75%      284.000000  
max      977.000000  
数据的大小
(10886, 7)
数据的前五行
        datetime  season  holiday  workingday  casual  registered  count
0  2011/1/1 0:00       1        0           0       3          13     16
1  2011/1/1 1:00       1        0           0       8          32     40
2  2011/1/1 2:00       1        0           0       5          27     32
3  2011/1/1 3:00       1        0           0       3          10     13
4  2011/1/1 4:00       1        0           0       0           1      1
数据的后五行
               datetime  season  holiday  workingday  casual  registered  \
10881  2012/12/19 19:00       4        0           1       7         329   
10882  2012/12/19 20:00       4        0           1      10         231   
10883  2012/12/19 21:00       4        0           1       4         164   
10884  2012/12/19 22:00       4        0           1      12         117   
10885  2012/12/19 23:00       4        0           1       4          84   

       count  
10881    336  
10882    241  
10883    168  
10884    129  
10885     88  
数据的类型
datetime      object
season         int64
holiday        int64
workingday     int64
casual         int64
registered     int64
count          int64
dtype: object
#2.3、数据提取
#2.3.1提取年月日,并添加入原DateFrame
bikedata['date'] = bikedata.datetime.apply(lambda x:x.split()[0])
#2.3.2提取小时
bikedata['hour'] = bikedata.datetime.apply(lambda x:x.split()[1].split(':')[0])
#2.3.3提取分钟
bikedata['minute'] = bikedata.datetime.apply(lambda x:x.split()[1].split(':')[1])
print(bikedata.head())
datetime  season  holiday  workingday  casual  registered  count  \
0  2011/1/1 0:00       1        0           0       3          13     16   
1  2011/1/1 1:00       1        0           0       8          32     40   
2  2011/1/1 2:00       1        0           0       5          27     32   
3  2011/1/1 3:00       1        0           0       3          10     13   
4  2011/1/1 4:00       1        0           0       0           1      1   

       date hour minute  
0  2011/1/1    0     00  
1  2011/1/1    1     00  
2  2011/1/1    2     00  
3  2011/1/1    3     00  
4  2011/1/1    4     00
#2.3.4 在年月日基础上提取星期几和月份
#使用calendar包
#其中,date类型是: 年-月-日 有几个方法,首先是.weekday()返回的是整型数,0-6是周一到周五;其次是.month返回的
#是整型数,是月份的数字
#再者,calendar有几个方法。首先是calendar.dat_name[整型数字],返回的是星期几的全程
#然后,calendar.month_name[整型数字],返回的是月份的全称。
bikedata['weekend'] = bikedata.date.apply(lambda datestring:calendar.day_name[datetime.strptime(
                                                            datestring,'%Y/%m/%d').weekday()])
bikedata['month'] = bikedata.date.apply(lambda datestring:calendar.month_name[datetime.strptime(
                                                            datestring,'%Y/%m/%d').month])
print(bikedata.head())
datetime  season  holiday  workingday  casual  registered  count  \
0  2011/1/1 0:00       1        0           0       3          13     16   
1  2011/1/1 1:00       1        0           0       8          32     40   
2  2011/1/1 2:00       1        0           0       5          27     32   
3  2011/1/1 3:00       1        0           0       3          10     13   
4  2011/1/1 4:00       1        0           0       0           1      1   

       date hour minute   weekend    month  
0  2011/1/1    0     00  Saturday  January  
1  2011/1/1    1     00  Saturday  January  
2  2011/1/1    2     00  Saturday  January  
3  2011/1/1    3     00  Saturday  January  
4  2011/1/1    4     00  Saturday  January
#2.4数据转换
#2.4.1 将season转成英文季节名,使用映射方法
#映射方法有两种,一种是利用python的映射方法map,将season提取出来,使用自定义函数来改变
#第二种就是利用series对象的自带的map进行映射修改
'''
def get_season(season):
    if season==1:
        return 'Spring'
    elif season==2:
        return 'Summer'
    elif season==3:
        return 'Fall'
    else:
        return 'Winter'
#map_result=map(get_season,list(bikedata.season.values))
bikedata.season = bikedata.season.apply(lambda x:get_season(x))
'''
bikedata['season'] = bikedata.season.map({1:'Spring',2:'Summer',3:'Fall',4:'Winter'})
print(bikedata.head())
datetime  season  holiday  workingday  casual  registered  count  \
0  2011/1/1 0:00  Spring        0           0       3          13     16   
1  2011/1/1 1:00  Spring        0           0       8          32     40   
2  2011/1/1 2:00  Spring        0           0       5          27     32   
3  2011/1/1 3:00  Spring        0           0       3          10     13   
4  2011/1/1 4:00  Spring        0           0       0           1      1   

       date hour minute   weekend    month  
0  2011/1/1    0     00  Saturday  January  
1  2011/1/1    1     00  Saturday  January  
2  2011/1/1    2     00  Saturday  January  
3  2011/1/1    3     00  Saturday  January  
4  2011/1/1    4     00  Saturday  January
#2.4.1 将某些变量变成分类变量
varlist = ['hour','weekend','month','season','minute','holiday','workingday']
for each in varlist:
    bikedata[each] = bikedata[each].astype('category')
print(bikedata.dtypes)
datetime        object
season        category
holiday       category
workingday    category
casual           int64
registered       int64
count            int64
date            object
hour          category
minute        category
weekend       category
month         category
dtype: object
#由于此时的datetime由date和hour还有minute代替,所以删除
bikedata.drop('datetime',axis=1,inplace=True)
#2.5、数据预处理之数据清洗
#2.5.1 首先,数据查看是否有缺失值
print(bikedata.describe())
casual    registered         count
count  10886.000000  10886.000000  10886.000000
mean      36.021955    155.552177    191.574132
std       49.960477    151.039033    181.144454
min        0.000000      0.000000      1.000000
25%        4.000000     36.000000     42.000000
50%       17.000000    118.000000    145.000000
75%       49.000000    222.000000    284.000000
max      367.000000    886.000000    977.000000
#观察得,count都一直,则无缺失值,进行下一步。
#2.5.2接着,检查是否有异常值,利用绘图
fig,axes = plt.subplots(nrows=2,ncols=2)#创建子图,获取它的画板fig与画布axes
fig.set_size_inches(1,12)#设置画板的大小
sn.boxplot(data=bikedata,y='count',orient='v',ax=axes[0][0])#利用seaborn创建双特征箱型图,
#count作为纵坐标,水平显示,画在子图一中
sn.boxplot(data=bikedata,y='count',x='season',orient='v',ax=axes[0][1])#利用seaborn创建双特征箱型图,
#count作为纵坐标,season作为横坐标,水平显示,画在子图二中
sn.boxplot(data=bikedata,y='count',x='hour',orient='v',ax=axes[1][0])#利用seaborn创建双特征箱型图,
#count作为纵坐标,hour作为横坐标,水平显示,画在子图三中

sn.boxplot(data=bikedata,y='count',x='workingday',orient='v',ax=axes[1][1])#利用seaborn创建双特征箱型图,
#count作为纵坐标,workingday作为横坐标,水平显示,画在子图二中
#设置子图的纵横坐标还有标题名称
axes[0][0].set(ylabel='骑行人数',title='骑行人数')
axes[0][1].set(xlabel='季节',ylabel='骑行人数',title='不同季节骑行人数骑行人数')
axes[0][0].set(xlabel='时间',ylabel='骑行人数',title='一天内不同时间骑行人数')
axes[0][0].set(xlabel='工作日',ylabel='骑行人数',title='工作日骑行人数')
plt.savefig('Abnormal_value_analysis.png')
plt.show()

字体错误(不影响)

基于python共享单车管理系统 共享单车uml_基于python共享单车管理系统

#2.5.3将异常值删除
#去除异常值的方法是使用纠正资质的方法,即数值减去平均值的绝对值大于3倍的方差就是异常值
bikedata1 = bikedata[np.abs(bikedata['count']-bikedata['count'].mean())<=(3*bikedata['count'].std())]

print('去除异常值前',bikedata.shape)
print('去除异常值后',bikedata1.shape)
去除异常值前 (10886, 11)
去除异常值后 (10739, 11)
#2.5.4保存数据
bikedata1.to_csv('deal_data.csv')
#3数据进行分析与可视化
#3.1 不同月份的骑行时间
fig,ax = plt.subplots()#取出画板与画布
fig.set_size_inches(12,20)#设置画板大小
#3.1.1设置一月的变量
sortOrder = ['Janury','February','March','April','May','June','July','August','September','October'
            ,'November','December']
#3.1.2判断每个月有几条数据,从大到小排序
#3.1.2.1首先获取DataFrame对象(每个月的平均count),并重新设置索引
monthAggregated = pd.DataFrame(bikedata1.groupby('month')['count'].mean()).reset_index()
print(monthAggregated)
#3.1.2.2从小到大排序
monthSorted = monthAggregated.sort_values(by='count',ascending=False)
print('排序后')
print(monthSorted)


#3.1.2画柱形图
#利用seaborn来画柱形图,order是用来控制条形图的顺序,x是横坐标利用的数据,y是纵坐标利用的数据
sn.barplot(data=monthSorted,x='month',y='count',order=sortOrder)
#ax.set(xlabel='月份',ylabel='平均骑行人数',title='不同月份的骑行人数')
ax.set(xlabel='month',ylabel='people_count',title='cu=ount_month')
plt.savefig('month_count.png')
plt.show()
month       count
0       April  177.013363
1      August  218.130631
2    December  174.349451
3    February  110.003330
4     January   90.366516
5        July  225.133929
6        June  231.093855
7       March  145.399108
8         May  212.294118
9    November  193.677278
10    October  205.184510
11  September  213.777273
排序后
        month       count
6        June  231.093855
5        July  225.133929
1      August  218.130631
11  September  213.777273
8         May  212.294118
10    October  205.184510
9    November  193.677278
0       April  177.013363
2    December  174.349451
7       March  145.399108
3    February  110.003330
4     January   90.366516

出现字体错误(不重要)

基于python共享单车管理系统 共享单车uml_共享单车_02

#3.2一周内不同天不同时间的骑行人数
weekOrder = ['Sunday','Monday','Tuesday','Wednesday','Thursday','Friday','Saturday']
fig1,ax1 = plt.subplots()
fig1.set_size_inches(12,20)
#3.2.1分组统计骑行时间的一周内分布并重新索引
hourAggregated = pd.DataFrame(bikedata1.groupby(['hour','weekend'],sort=True)['count'].mean()).reset_index()
print(hourAggregated)
hour    weekend       count
0      0     Friday   53.234375
1      0     Monday   35.492308
2      0   Saturday   98.212121
3      0     Sunday   96.227273
4      0   Thursday   37.476923
5      0    Tuesday   27.328125
6      0  Wednesday   36.246154
7      1     Friday   24.453125
8      1     Monday   18.076923
9      1   Saturday   70.015152
10     1     Sunday   79.454545
11     1   Thursday   15.415385
12     1    Tuesday   11.904762
13     1  Wednesday   15.615385
14    10     Friday  156.812500
15    10     Monday  140.984615
16    10   Saturday  269.530303
17    10     Sunday  264.636364
18    10   Thursday  128.323077
19    10    Tuesday  129.187500
20    10  Wednesday  132.353846
21    11     Friday  186.828125
22    11     Monday  171.338462
23    11   Saturday  339.484848
24    11     Sunday  321.242424
25    11   Thursday  156.230769
26    11    Tuesday  145.609375
27    11  Wednesday  148.938462
28    12     Friday  236.359375
29    12     Monday  214.584615
..   ...        ...         ...
138    5    Tuesday   24.015625
139    5  Wednesday   25.046154
140    6     Friday   91.359375
141    6     Monday   89.246154
142    6   Saturday   21.121212
143    6     Sunday   15.136364
144    6   Thursday  108.230769
145    6    Tuesday  105.375000
146    6  Wednesday  105.815385
147    7     Friday  254.109375
148    7     Monday  260.400000
149    7   Saturday   47.242424
150    7     Sunday   34.742424
151    7   Thursday  307.692308
152    7    Tuesday  297.609375
153    7  Wednesday  297.246154
154    8     Friday  450.866667
155    8     Monday  417.555556
156    8   Saturday  117.560606
157    8     Sunday   83.954545
158    8   Thursday  473.483333
159    8    Tuesday  458.741935
160    8  Wednesday  448.431034
161    9     Friday  262.406250
162    9     Monday  226.353846
163    9   Saturday  190.606061
164    9     Sunday  158.666667
165    9   Thursday  241.815385
166    9    Tuesday  236.140625
167    9  Wednesday  238.769231

[168 rows x 3 columns]

字体异常(不重要)

#3.2.1创建散点图
#其中,x,y分别是数据,hue是用来统计的数据,hueOrder是统计的顺序
sn.pointplot(x=hourAggregated['hour'],y=hourAggregated['count'],hue=hourAggregated['weekend'],
            hueOrder=weekOrder,data=hourAggregated)
#设置坐标轴名字与标题
ax1.set(xlabel='timt',ylabel='people_count',title='week_time_count')
print(hourAggregated)
plt.savefig('week_time_count_result.png')
plt.show()
hour    weekend       count
0      0     Friday   53.234375
1      0     Monday   35.492308
2      0   Saturday   98.212121
3      0     Sunday   96.227273
4      0   Thursday   37.476923
5      0    Tuesday   27.328125
6      0  Wednesday   36.246154
7      1     Friday   24.453125
8      1     Monday   18.076923
9      1   Saturday   70.015152
10     1     Sunday   79.454545
11     1   Thursday   15.415385
12     1    Tuesday   11.904762
13     1  Wednesday   15.615385
14    10     Friday  156.812500
15    10     Monday  140.984615
16    10   Saturday  269.530303
17    10     Sunday  264.636364
18    10   Thursday  128.323077
19    10    Tuesday  129.187500
20    10  Wednesday  132.353846
21    11     Friday  186.828125
22    11     Monday  171.338462
23    11   Saturday  339.484848
24    11     Sunday  321.242424
25    11   Thursday  156.230769
26    11    Tuesday  145.609375
27    11  Wednesday  148.938462
28    12     Friday  236.359375
29    12     Monday  214.584615
..   ...        ...         ...
138    5    Tuesday   24.015625
139    5  Wednesday   25.046154
140    6     Friday   91.359375
141    6     Monday   89.246154
142    6   Saturday   21.121212
143    6     Sunday   15.136364
144    6   Thursday  108.230769
145    6    Tuesday  105.375000
146    6  Wednesday  105.815385
147    7     Friday  254.109375
148    7     Monday  260.400000
149    7   Saturday   47.242424
150    7     Sunday   34.742424
151    7   Thursday  307.692308
152    7    Tuesday  297.609375
153    7  Wednesday  297.246154
154    8     Friday  450.866667
155    8     Monday  417.555556
156    8   Saturday  117.560606
157    8     Sunday   83.954545
158    8   Thursday  473.483333
159    8    Tuesday  458.741935
160    8  Wednesday  448.431034
161    9     Friday  262.406250
162    9     Monday  226.353846
163    9   Saturday  190.606061
164    9     Sunday  158.666667
165    9   Thursday  241.815385
166    9    Tuesday  236.140625
167    9  Wednesday  238.769231

[168 rows x 3 columns]

字体异常(不重要)

基于python共享单车管理系统 共享单车uml_基于python共享单车管理系统_03

总结回顾

  • 所需的库
本次案例,所需的库有如下:
首先,是python进行数据分析最常用的三个库:

 	1. numpy进行数据矩阵化读取与对这些数据进行简单处理。
 	2. pandas进行数据表格化读取与对这些数据进行清洗转换等。
 	3. matplotlib进行数据的可视化处理
其次,是其他所需的库或模块:

 	1. pylab是matplotlib的一个模块,本次案例主要是对数据可视化时进行字体转换
 	2. datetime模块,主要是对时间类型数据进行处理与转换
 	3. seaborn 是matplotlib的高级封装包,能够更加简洁高效的绘制可视化图形,并且
 	   在绘制过程中进行额外的操作,比如更改颜色,背景色等。
 	4.calcendar 是一个日历包,本案例中,主要是能够根据一个date类型 数据获取其所
 	   在的月份和是星期几
  • 所需的流程
  • 数据观察
数据观察使用的是describe()方法,在整体上感知数据,可以直观的观察数据是否有缺失值
最大值,最小值,1/4值,中位值等数据。
  • 数据预处理
数据预处理分为三步,数据清洗,数据提取,数据转换:
		

 		1. 数据清洗,在本案例中就是对缺失值进行填充,数值型用平均值填充,字符型用
 		   出现次数最多的填充;对异常值进行删除,使用的是纠正算法即:数值-平均值>
 		   3*方差则为异常值。
 		2.  数据提取,就是用已存在的列的数据获取所需的列的数据。在本案例中使用的
 		    是datetime的数据获取所需的weekend(本案例拼写错误,尴尬)星期的数据和月
 		    份的数据。
 		3. 数据转换,就是将字符型数据转成数值型,数值型转成字符型。常用的方法是使
 		   用series的map方法进行匹配映射。
  • 数据可视化
本案例中,数据可视化处理是使用的seaborn包进行可视化处理,图形是barplot柱形图与
	pointplot散点图。分别可视化的是不同月份的骑行时间图与一周内每天的骑行时间趋势与
	每周骑行时间分布。

链接:https://pan.baidu.com/s/1srOwBb56Qo9cGqrdxYpsjA 提取码:n36g