从A到B,有多条路线,要找出最短路线,应该用哪种数据结构来存储这些数据。
这不是显然的考查图论的相关知识了么,
1.图的两种表示方式:
邻接矩阵:二维数组搞定。
邻接表:Map<Vertext,List<Edge>>搞定。
其中邻接矩阵适用于稠密图,即图上的任意两点之间均(差不多都)存在一条边。
而A到B之间的路线,显然是稀疏图,果断的选用邻接表。
2.加权有向图最短路径问题,典型的dijkstra最短路径算法。
说干就干,翻翻《数据结构与算法》,自己用Java大概实现了一下,具体代码如下:
实现思路:
1,定义一个类:有向图类:Graph。
有向图类的子类:节点类:Vertex,边类:Vertex。
节点类:保存节点名称,上一个节点,长度等属性。
边节点:保存每条边的两边的节点,通过边找到对应的另一条节点。
2,该类有两个属性:
1,List<Vertex> vertexList:保存图的顶点集合,便于遍历顶点的时候查找对应集合。
2,Map<Vertex, List<Edge>> ver_edgeList_map:图的每个顶点对应的有向边。
3,为了能够记录最短路径,需要为每个节点定义一个属性:父节点,表示父节点到该点的距离最短。
3,每个节点有多个属性:
String name; //节点名字
boolean known; //此节点之前是否已知,如果未知的话,则需要初始化距离adjuDist和parent属性
int adjuDist; //保存从开始节点到此节点距离
Vertex parent; //当前从初始节点到此节点的最短路径下,的父节点。
4,从起点节点开始查找。
比较规则:从A节点开始比较,对其指向的B节点进行初始化和比较:
如果B节点未被初始化,先设置该B节点的父节点为A节点,距离为边长加上A节点的adjuDist。
如果已经初始化完了,则重新比较:
如果A节点加边长小于B节点的adjuDist,则证明A节点到B节点的距离最短,设置A节点为B节点父节点,并且长度修改为A节点的adjuDist加上边长。
否则不做操作。
5,等所有的节点初始化完了,从终止节点开始,通过终止节点的父节点找到上一个节点,输出节点的路径。
代码如下:
package 笔试题;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
public class Graph{
private List<Vertex> vertexList; //图的顶点集
private Map<Vertex, List<Edge>> ver_edgeList_map; //图的每个顶点对应的有向边
public Graph(List<Vertex> vertexList, Map<Vertex, List<Edge>> ver_edgeList_map) {
super();
this.vertexList = vertexList;
this.ver_edgeList_map = ver_edgeList_map;
}
public List<Vertex> getVertexList() {
return vertexList;
}
public void setVertexList(List<Vertex> vertexList) {
this.vertexList = vertexList;
}
public Map<Vertex, List<Edge>> getVer_edgeList_map() {
return ver_edgeList_map;
}
public void setVer_edgeList_map(Map<Vertex, List<Edge>> ver_edgeList_map) {
this.ver_edgeList_map = ver_edgeList_map;
}
static class Edge{
private Vertex startVertex; //此有向边的起始点
private Vertex endVertex; //此有向边的终点
private int weight; //此有向边的权值
public Edge(Vertex startVertex, Vertex endVertex, int weight) {
super();
this.startVertex = startVertex;
this.endVertex = endVertex;
this.weight = weight;
}
public Edge()
{}
public Vertex getStartVertex() {
return startVertex;
}
public void setStartVertex(Vertex startVertex) {
this.startVertex = startVertex;
}
public Vertex getEndVertex() {
return endVertex;
}
public void setEndVertex(Vertex endVertex) {
this.endVertex = endVertex;
}
public int getWeight() {
return weight;
}
public void setWeight(int weight) {
this.weight = weight;
}
}
static class Vertex {
private final static int infinite_dis = Integer.MAX_VALUE;
private String name; //节点名字
private boolean known; //此节点之前是否已知
private int adjuDist; //此节点距离
private Vertex parent; //当前从初始节点到此节点的最短路径下,的父节点。
public Vertex()
{
this.known = false;
this.adjuDist = infinite_dis;
this.parent = null;
}
public Vertex(String name)
{
this.known = false;
this.adjuDist = infinite_dis;
this.parent = null;
this.name = name;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public boolean isKnown() {
return known;
}
public void setKnown(boolean known) {
this.known = known;
}
public int getAdjuDist() {
return adjuDist;
}
public void setAdjuDist(int adjuDist) {
this.adjuDist = adjuDist;
}
public Vertex getParent() {
return parent;
}
public void setParent(Vertex parent) {
this.parent = parent;
}
/**
* 重新Object父类的equals方法
*/
@Override
public boolean equals(Object obj) {
if (!(obj instanceof Vertex)) {
throw new ClassCastException("an object to compare with a Vertext must be Vertex");
}
if (this.name==null) {
throw new NullPointerException("name of Vertex to be compared cannot be null");
}
return this.name.equals(obj);
}
}
public void setRoot(Vertex v)
{
v.setParent(null);
v.setAdjuDist(0);
}
/**
*
* @param startIndex dijkstra遍历的起点节点下标
* @param destIndex dijkstra遍历的终点节点下标
*/
public void dijkstraTravasal(int startIndex,int destIndex)
{
Vertex start = vertexList.get(startIndex);
Vertex dest = vertexList.get(destIndex);
String path = "["+dest.getName()+"]";
setRoot(start);
updateChildren(vertexList.get(startIndex));
int shortest_length = dest.getAdjuDist();
while((dest.getParent()!=null)&&(!dest.equals(start)))
{
path = "["+dest.getParent().getName()+"] --> "+path;
dest = dest.getParent();
}
System.out.println("["+vertexList.get(startIndex).getName() +"] to ["+
vertexList.get(destIndex).getName()+"] dijkstra shortest path :: "+path);
System.out.println("shortest length::"+shortest_length);
}
/**
* 从初始节点开始递归更新邻接表
* @param v
*/
private void updateChildren(Vertex v)
{
if (v==null) {
return;
}
if (ver_edgeList_map.get(v)==null||ver_edgeList_map.get(v).size()==0) {
return;
}
//用来保存每个可达的节点
List<Vertex> childrenList = new LinkedList<Graph.Vertex>();
for(Edge e:ver_edgeList_map.get(v))
{
Vertex childVertex = e.getEndVertex();
//如果子节点之前未知,则进行初始化,
//把当前边的开始点默认为子节点的父节点,长度默认为边长加边的起始节点的长度,并修改该点为已经添加过,表示不用初始化
if(!childVertex.isKnown())
{
childVertex.setKnown(true);
childVertex.setAdjuDist(v.getAdjuDist()+e.getWeight());
childVertex.setParent(v);
childrenList.add(childVertex);
}
//此时该子节点的父节点和之前到该节点的最小长度已经知道了,则比较该边起始节点到该点的距离是否小于子节点的长度,
//只有小于的情况下,才更新该点为该子节点父节点,并且更新长度。
int nowDist = v.getAdjuDist()+e.getWeight();
if(nowDist>=childVertex.getAdjuDist())
{
continue;
}
else {
childVertex.setAdjuDist(nowDist);
childVertex.setParent(v);
}
}
//更新每一个子节点
for(Vertex vc:childrenList)
{
updateChildren(vc);
}
}
}
测试代码:
package 笔试题;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import 笔试题.Graph.Edge;
import 笔试题.Graph.Vertex;
/**
* 测试用main方法
* @author wuhui.wwh
*
*/
public class TestGraph {
public static void main(String[] args) {
Vertex v1= new Vertex("v1");
Vertex v2= new Vertex("v2");
Vertex v3= new Vertex("v3");
Vertex v4= new Vertex("v4");
Vertex v5= new Vertex("v5");
Vertex v6= new Vertex("v6");
Vertex v7= new Vertex("v7");
Vertex v8= new Vertex("v8");
List<Vertex> verList = new LinkedList<Graph.Vertex>();
verList.add(v1);
verList.add(v2);
verList.add(v3);
verList.add(v4);
verList.add(v5);
verList.add(v6);
verList.add(v7);
verList.add(v8);
Map<Vertex, List<Edge>> vertex_edgeList_map = new HashMap<Graph.Vertex, List<Edge>>();
List<Edge> v1List = new LinkedList<Graph.Edge>();
v1List.add(new Edge(v1,v2,6));
v1List.add(new Edge(v1,v4,1));
v1List.add(new Edge(v1,v4,1));
List<Edge> v2List = new LinkedList<Graph.Edge>();
v2List.add(new Edge(v2,v3,43));
v2List.add(new Edge(v2,v4,11));
v2List.add(new Edge(v2,v5,6));
List<Edge> v3List = new LinkedList<Graph.Edge>();
v3List.add(new Edge(v3,v8,8));
List<Edge> v4List = new LinkedList<Graph.Edge>();
v4List.add(new Edge(v4,v3,15));
v4List.add(new Edge(v4,v5,12));
List<Edge> v5List = new LinkedList<Graph.Edge>();
v5List.add(new Edge(v5,v3,38));
v5List.add(new Edge(v5,v8,13));
v5List.add(new Edge(v5,v7,24));
List<Edge> v6List = new LinkedList<Graph.Edge>();
v6List.add(new Edge(v6,v5,1));
v6List.add(new Edge(v6,v7,12));
List<Edge> v7List = new LinkedList<Graph.Edge>();
v7List.add(new Edge(v7,v8,20));
vertex_edgeList_map.put(v1, v1List);
vertex_edgeList_map.put(v2, v2List);
vertex_edgeList_map.put(v3, v3List);
vertex_edgeList_map.put(v4, v4List);
vertex_edgeList_map.put(v5, v5List);
vertex_edgeList_map.put(v6, v6List);
vertex_edgeList_map.put(v7, v7List);
Graph g = new Graph(verList, vertex_edgeList_map);
g.dijkstraTravasal(0, 7);
}
}
运行结果:
[v1] to [v8] dijkstra shortest path :: [v1] --> [v2] --> [v5] --> [v8]
shortest length::25