最近仿照书上写了个多线程爬虫框架,在实现多进程的时候遇到了困难,不过打算开始学scrapy了也就暂时不管多进程的问题了

首先是缓存部分,在每次下载一个html的时候,首先会查询mongodb数据库中是否已经有该页面的缓存,如果没有,下载页面,如果有,获得缓存的页面

在mongodb中设置一个特殊索引用于删除超时的缓存(缓存默认保存30天),由于该类实现了 __getitem__和__setitem__方法,所以可以直接像操作字典一样操作这个对象

import pickle
 import zlib
 from datetime import datetime,timedelta
 from pymongo import MongoClient
 from bson.binary import Binary


 class MongoCache:
     def __init__(self,client = None,expires = timedelta(days=30)):
         #如果没有传递MongoClient对象,创建一个默认对象
         if client is None:
             self.client = MongoClient("localhost",12345)
         #创建一个连接想数据库中缓存数据
         self.db = self.client.cache
         self.db.webpage.create_index("timestamp",expireAfterSeconds=expires.total_seconds())


     def __getitem__(self, url):
         '''
         从数据库中获得该url的值
         '''
         record = self.db.webpage.find_one({"_id":url})
         print(record)
         if record:
             return pickle.loads(zlib.decompress(record["result"]))
             #return record["result"]
         else:
             raise KeyError(url+"不存在")
     def __setitem__(self, url,result):
         '''
         将数据储存到数据库中
         '''
         record = {"result":Binary(zlib.compress(pickle.dumps(result))),
                   "timestamp":datetime.utcnow()}
         #record = {"result":result,"timestamp":datetime.utcnow()}
         self.db.webpage.update({"_id":url},{"$set":record},upsert=True)

然后是实现下载的类,该类首先查看缓存,如果缓存中已有html并且响应码正常,则直接从缓存中获取html,否则下载页面

Throttle类实现了下载之间的延时功能

import urllib.request
 import time
 import datetime
 import re
 import socket
 import random
 from DiskCache import DiskCache


 DEFAULT_AGENT = "wswp"
 DEFAULT_DELAY = 5
 DEFAULT_RETRIES = 1
 DEFAULT_TIMEOUT = 60


 class Downloader:
     '''
     用于下载html的类,可以传入的参数有
     proxies;代理ip列表,会随机的在列表中抽取代理ip进行下载
     delay:下载同一域名的等待时间,默认一秒
     user_agent:主机名,默认python
     num_retries:下载失败重新下载次数
     timeout;下载超时时间
     cache:缓存方式
     '''
     def __init__(self,proxies=None,delay = DEFAULT_DELAY,user_agent = DEFAULT_AGENT,num_retries = DEFAULT_RETRIES,timeout = DEFAULT_TIMEOUT,opener = None,cache=None):
         #设置超时时间
         socket.setdefaulttimeout(timeout)
         self.throttle = Throttle(delay)
         self.user_agent = user_agent
         self.proxies = proxies
         self.num_retries = num_retries
         self.opener = opener
         self.cache = cache


     def   __call__(self,url):
         '''
         带有缓存功能的下载方法,通过类对象可以直接调用
         '''
         print(self.user_agent)
         print("开始下载"+url)
         result = None
         if self.cache:
             try:
                 #从缓存中获取url对应的数据
                 result = self.cache[url]
                 print("测试代码4")
             except KeyError:
                 #如果获得KeyError异常,跳过
                 pass
             else:
                 #如果是未成功下载的网页,重新下载
                 if result["code"]:
                     if self.num_retries > 0 and 500<result["code"]<600:
                         result = None
         # 如果页面不存在,下载该页面
         if result is None:
             #延迟默时间
             self.throttle.wait(url)
             if self.proxies:
                 #如果有代理IP,从代理IP列表中随机抽取一个代理IP
                 proxy = random.choice(self.proxies)
             else:
                 proxy = None
             #构造请求头
             headers = {"User-agent":self.user_agent}
             #下载页面
             result = self.download(url,headers,proxy = proxy,num_retries = self.num_retries)
             '''
             file = open("f:\\bilibili.html","wb")
             file.write(result["html"])
             file.close()
         '''
             if self.cache:
                 #如果有缓存方式,缓存网页
                 self.cache[url] = result
         print(url,"页面下载完成")
         return result["html"]




     def download(self,url,headers,proxy,num_retries,data=None):
         '''
         用于下载一个页面,返回页面和与之对应的状态码
         '''
         #构建请求
         request = urllib.request.Request(url,data,headers or {})
         request.add_header("Cookie","finger=7360d3c2; UM_distinctid=15c59703db998-0f42b4b61afaa1-5393662-100200-15c59703dbcc1d; pgv_pvi=653650944; fts=1496149148; sid=bgsv74pg; buvid3=56812A21-4322-4C70-BF18-E6D646EA78694004infoc; CNZZDATA2724999=cnzz_eid%3D214248390-1496147515-https%253A%252F%252Fwww.baidu.com%252F%26ntime%3D1496805293")
         request.add_header("Upgrade-Insecure-Requests","1")
         opener = self.opener or urllib.request.build_opener()
         if proxy:
             #如果有代理IP,使用代理IP
             opener = urllib.request.build_opener(urllib.request.ProxyHandler(proxy))
         try:
             #下载网页
             response = opener.open(request)
             print("code是",response.code)
             html = response.read().decode()
             code = response.code
         except Exception as e:
             print("下载出现错误",str(e))
             html = ''
             if hasattr(e,"code"):
                 code =e.code
                 if num_retries > 0 and 500<code<600:
                     #如果错误不是未找到网页,则重新下载num_retries次
                     return self.download(url,headers,proxy,num_retries-1,data)
             else:
                 code = None
         print(html)
         return {"html":html,"code":code}




 class Throttle:
     '''
     按照延时,请求,代理IP等下载网页,处理网页中的link的类
     '''


     def __init__(self, delay):
         self.delay = delay
         self.domains = {}


     def wait(self, url):
         '''
         每下载一个html之间暂停的时间


         '''
         # 获得域名
         domain = urllib.parse.urlparse(url).netloc
         # 获得上次访问此域名的时间
         las_accessed = self.domains.get(domain)


         if self.delay > 0 and las_accessed is not None:
             # 计算需要强制暂停的时间 = 要求的间隔时间 - (现在的时间 - 上次访问的时间)
             sleep_secs = self.delay - (datetime.datetime.now() - las_accessed).seconds
             if sleep_secs > 0:
                 time.sleep(sleep_secs)
         # 存储此次访问域名的时间
         self.domains[domain] = datetime.datetime.now()然后是实现爬虫功能的类
import time
 import threading
 import re
 import urllib.parse
 import datetime




 from bs4 import BeautifulSoup
 from Downloader import Downloader
 from MongoCache import MongoCache


 SLEEP_TIME = 1


 def get_links(html):
     '''
     获得一个页面上的所有链接
     '''
     bs = BeautifulSoup(html, "lxml")
     link_labels = bs.find_all("a")
     # for link in link_labels:
     return [link_label.get('href', "default") for link_label in link_labels]


 def same_domain(url1, url2):
     '''
     判断域名书否相同
     '''
     return urllib.parse.urlparse(url1).netloc == urllib.parse.urlparse(url2).netloc


 def normalize(seed_url, link):
     '''
     用于将绝对路径转换为相对路径
     '''
     link, no_need = urllib.parse.urldefrag(link)


     return urllib.parse.urljoin(seed_url, link)


 def threader_crawler(seed_url,resource_regiex=None,link_regiex = ".*",delay=5,cache=None,download_source_callback=None,user_agent="wswp",proxies=None, num_retries=1, max_threads=10, timeout=60,max_url=500):




     downloaded = []


     crawl_queue = [seed_url]


     seen = set([seed_url])


     D = Downloader(cache = cache,delay = delay,user_agent=user_agent,proxies=proxies,num_retries=num_retries,timeout=timeout)
     print(user_agent)
     def process_queue():
         while True:


             links = []
             try:
                 url = crawl_queue.pop()
             except IndexError:
                 break
             else:
                 html = D(url)
                 downloaded.append(url)


                 if download_source_callback:
                     if resource_regiex and re.match(resource_regiex,url):
                         download_source_callback(url,html)
                 links.extend([link for link in get_links(html) if re.match(link_regiex,link)])
                 for link in links:
                     link = normalize(seed_url, link)
                     if link not in seen:
                         seen.add(link)


                         if same_domain(seed_url,link):
                             crawl_queue.append(link)
                 print("已经发现的总网页数目为",len(seen))
                 print("已经下载过的网页数目为",len(downloaded))
                 print("还没有遍历过的网页数目为",len(crawl_queue))
     threads=[]
     while threads or crawl_queue:
         if len(downloaded) == max_url:
             return
         for thread in threads:
             if not thread.is_alive():
                 threads.remove(thread)
         while len(threads) < max_threads and crawl_queue:
             print("线程数量为", len(threads))
             thread = threading.Thread(target=process_queue)
             thread.setDaemon(True)
             thread.start()
             print("线程数量为", len(threads))
             threads.append(thread)


 def main():
     starttime = datetime.datetime.now()
     threader_crawler("http://www.xicidaili.com/",max_threads=1,max_url=10,user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36")
     endtime = datetime.datetime.now()
     print("花费时间",(endtime-starttime).total_seconds())
 if __name__ == "__main__":
     main()

经过测试,多线程爬虫速度要远远高于单个线程爬取,简单测试结果如下

开启30个线程爬取一百个网站用时31秒,平均一个用时0.31秒
开启10个线程爬取一百个网页用时69秒,平均一个用时0.69秒
开启1 个线程爬取一百个网站用时774秒,平均一个用时7.74秒

顺便实现了一个测试用的资源下载类,用于将电影天堂的所有资源页的电影保存到数据库

from lxml import etree
from pymongo import MongoClient
import urllib.request
import re

class download_source_callback:
    def __init__(self,client=None):
        if client:
            self.client = client
        else:
            self.client = MongoClient("localhost",12345)
        self.db = self.client.cache


    def __call__(self,url,html):
        title_regiex = "<title>(.*?)</title>"
        class_regiex = "类  别(.*?)<"
        director_regiex = ".*导  演(.*?)<"
        content_regiex = "简  介(.*?)<br /><br />◎"
        imdb_regiex = "IMDb评分 (.*?)<"
        douban_regiex = "豆瓣评分(.*?)<"
        html = html.decode("gbk","ignore")
        m = re.search(title_regiex,html)
        if m:
            title = m.group(1)
        else:
            title = None
        m = re.search(class_regiex,html)
        if m:
            class_name = m.group(1)
        else:
            class_name = None
        m = re.search(content_regiex,html)
        if m:
            text = m.group(1).replace("<br />","")
            content = text
        else:
            content = None
        m = re.search(douban_regiex,html)
        if m:
            douban = m.group(1)
        else:
            douban = None
        m = re.search(imdb_regiex,html)
        if m:
            imdb = m.group(1)
        else:
            imdb = None
        print(title,class_name,content,douban,imdb)
        move = {
            "name":title,
            "class":class_name,
            "introduce":content,
            "douban":douban,
            "imdb":imdb
        }
        self.db.moves.update({"_id":title},{"$set":move},upsert=True)
        print("成功储存一部电影"+title)



if __name__ == "__main__":
    html= open("f:\资源.txt").read()

    a = download_source_callback()
    a("http://www.dytt8.net/html/gndy/jddy/20170529/54099.html",html)