NoSQL的分类:列存储,文档存储,key-value存储,对象存储,xml数据库
NoSQL的分类
NoSQL仅仅是一个概念,NoSQL数据库根据数据的存储模型和特点分为很多种类。
类型 | 部分代表 | 特点 |
列存储 | Hbase Cassandra Hypertable | 顾名思义,是按列存储数据的。最大的特点是方便存储结构化和半结构化数据,方便做数据压缩,对针对某一列或者某几列的查询有非常大的IO优势。 |
文档存储 | CouchDB | 文档存储一般用类似json的格式存储,存储的内容是文档型的。这样也就有有机会对某些字段建立索引,实现关系数据库的某些功能。 |
key-value存储 | Tokyo Cabinet / Tyrant Berkeley DB MemcacheDB Redis | 可以通过key快速查询到其value。一般来说,存储不管value的格式,照单全收。(Redis包含了其他功能) |
图存储 | Neo4J FlockDB | 图形关系的最佳存储。使用传统关系数据库来解决的话性能低下,而且设计使用不方便。 |
对象存储 | db4o Versant | 通过类似面向对象语言的语法操作数据库,通过对象的方式存取数据。 |
xml数据库 | Berkeley DB XML BaseX | 高效的存储XML数据,并支持XML的内部查询语法,比如XQuery,Xpath。 |
1键值(Key-Value)数据库
适用的场景
储存用户信息,比如会话、配置文件、参数、购物车等等。这些信息一般都和ID(键)挂钩,这种情景下键值数据库是个很好的选择。
不适用场景
1. 取代通过键查询,而是通过值来查询。Key-Value数据库中根本没有通过值查询的途径。
2. 需要储存数据之间的关系。在Key-Value数据库中不能通过两个或以上的键来关联数据。
3. 事务的支持。在Key-Value数据库中故障产生时不可以进行回滚。
2 面向文档(Document-Oriented)数据库
适用的场景
1. 日志。企业环境下,每个应用程序都有不同的日志信息。Document-Oriented数据库并没有固定的模式,所以我们可以使用它储存不同的信息。
2. 分析。鉴于它的弱模式结构,不改变模式下就可以储存不同的度量方法及添加新的度量。
不适用场景
在不同的文档上添加事务。Document-Oriented数据库并不支持文档间的事务,如果对这方面有需求则不应该选用这个解决方案。
3
列存储(Wide Column Store/Column-Family)数据库
适用的场景
1. 日志。因为我们可以将数据储存在不同的列中,每个应用程序可以将信息写入自己的列族中。
2. 博客平台。我们储存每个信息到不同的列族中。举个例子,标签可以储存在一个,类别可以在一个,而文章则在另一个。
不适用场景
1. 如果我们需要ACID事务。Vassandra就不支持事务。
2. 原型设计。如果我们分析Cassandra的数据结构,我们就会发现结构是基于我们期望的数据查询方式而定。在模型设计之初,我们根本不可能去预测它的查询方式,而一旦查询方式改变,我们就必须重新设计列族。
4
图(Graph-Oriented)数据库
适用的场景
1. 在一些关系性强的数据中
2. 推荐引擎。如果我们将数据以图的形式表现,那么将会非常有益于推荐的制定
不适用场景
不适合的数据模型。图数据库的适用范围很小,因为很少有操作涉及到整个图。