今天继续学习 Spark 的内存管理。昨天学习的是储存内存的管理,没看过的可以学习昨天的文章。

【Spark】Spark 内存管理 - 存储内存

今天学习执行内存的管理。

执行内存主要用来存储任务在执行 Shuffle 时占用的内存,Shuffle 是按照一定规则对 RDD 数据重新分区的过程,下面分析 Shuffle 的 Write 和 Read 两阶段对执行内存的使用。

1.Shuffle Write

根据 map 端选择的排序方式不同,内存管理也不相同:

  • 若在 map 端选择普通的排序方式,会采用 ExternalSorter 进行外排,在内存中存储数据时主要占用堆内执行空间。
  • 若在 map 端选择 Tungsten 的排序方式,则采用 ShuffleExternalSorter 直接对以序列化形式存储的数据排序,在内存中存储数据时可以占用堆外或堆内执行空间,取决于用户是否开启了堆外内存,以及堆外执行内存是否足够。

对于 Tungsten 的排序方式:

  • 特点:解决了一些 JVM 在性能上的限制和弊端。Spark 会根据 Shuffle 的情况来自动选择是否采用 Tungsten 排序。
  • 实现:
  • Tungsten 采用的页式内存管理机制建立在 MemoryManager 之上,即 Tungsten 对执行内存的使用进行了一步的抽象,这样在 Shuffle 过程中无需关心数据具体存储在堆内还是堆外。
  • 每个内存页用一个 MemoryBlock 来定义,并用 Object obj 和 long offset 这两个变量统一标识一个内存页在系统内存中的地址。
  • 堆内的 MemoryBlock 是以 long 型数组的形式分配的内存,其 obj 的值为是这个数组的对象引用,offset 是 long 型数组的在 JVM 中的初始偏移地址,两者配合使用可以定位这个数组在堆内的绝对地址。
  • 堆外的 MemoryBlock 是直接申请到的内存块,其 obj 为 null,offset 是这个内存块在系统内存中的 64 位绝对地址。
  • Spark 用 MemoryBlock 巧妙地将堆内和堆外内存页统一抽象封装,并用页表(pageTable)管理每个 Task 申请到的内存页。
  • Tungsten 页式管理下的所有内存用 64 位的逻辑地址表示,由页号和页内偏移量组成:
  • 页号:占 13 位,唯一标识一个内存页,Spark 在申请内存页之前要先申请空闲页号。
  • 页内偏移量:占 51 位,是在使用内存页存储数据时,数据在页内的偏移地址。
  • 优点:有了统一的寻址方式,Spark 可以用 64 位逻辑地址的指针定位到堆内或堆外的内存,整个 Shuffle Write 排序的过程只需要对指针进行排序,并且无需反序列化,整个过程非常高效,对于内存访问效率和 CPU 使用效率带来了明显的提升。
2.Shuffle Read

占用堆内执行空间的两种情况:

  • 在对 reduce 端的数据进行聚合时,要将数据交给 Aggregator 处理,在内存中存储数据时占用堆内执行空间。
  • 如果需要进行最终结果排序,则要将再次将数据交给 ExternalSorter 处理,占用堆内执行空间。

在 ExternalSorter 和 Aggregator 中,Spark 会使用一种叫 AppendOnlyMap 的哈希表在堆内执行内存中存储数据,但在 Shuffle 过程中所有数据并不能都保存到该哈希表中,当这个哈希表占用的内存会进行周期性地采样估算,当其大到一定程度,无法再从 MemoryManager 申请到新的执行内存时,Spark 就会将其全部内容存储到磁盘文件中,这个过程被称为溢存(Spill),溢存到磁盘的文件最后会被归并(Merge)。

3.总结

Spark 的存储内存和执行内存有着截然不同的管理方式:

  • 对于存储内存,Spark 用一个 LinkedHashMap 来集中管理所有的 Block,Block 由需要缓存的 RDD 的 Partition 转化而成;
  • 对于执行内存,Spark 用 AppendOnlyMap 来存储 Shuffle 过程中的数据,在 Tungsten 排序中甚至抽象成为页式内存管理,开辟了全新的 JVM 内存管理机制。

欢迎关注。