图像分类中常见的模型

LeNet

LeNet是最早的卷积神经网络之一[1]。1998年,Yan LeCun第一次将LeNet卷积神经网络应用到图像分类上,在手写数字识别任务中取得了巨大成功。LeNet通过连续使用卷积和池化层的组合提取图像特征,其架构如 图1 所示,这里展示的是作者论文中的LeNet-5模型:

PaddleNLP Embedding单模态模型_全连接


第一模块:包含5×5的6通道卷积和2×2的池化。卷积提取图像中包含的特征模式(激活函数使用sigmoid),图像尺寸从32减小到28。经过池化层可以降低输出特征图对空间位置的敏感性,图像尺寸减到14。

第二模块:和第一模块尺寸相同,通道数由6增加为16。卷积操作使图像尺寸减小到10,经过池化后变成5。

第三模块:包含5×5的120通道卷积。卷积之后的图像尺寸减小到1,但是通道数增加为120。将经过第3次卷积提取到的特征图输入到全连接层。第一个全连接层的输出神经元的个数是64,第二个全连接层的输出神经元个数是分类标签的类别数,对于手写数字识别其大小是10。然后使用Softmax激活函数即可计算出每个类别的预测概率。

AlexNet

AlexNet与LeNet相比,具有更深的网络结构,包含5层卷积和3层全连接,同时使用了如下三种方法改进模型的训练过程:

数据增广:深度学习中常用的一种处理方式,通过对训练随机加一些变化,比如平移、缩放、裁剪、旋转、翻转或者增减亮度等,产生一系列跟原始图片相似但又不完全相同的样本,从而扩大训练数据集。通过这种方式,可以随机改变训练样本,避免模型过度依赖于某些属性,能从一定程度上抑制过拟合。

使用Dropout抑制过拟合

使用ReLU激活函数减少梯度消失现象

PaddleNLP Embedding单模态模型_卷积_02

VGG

VGG是当前最流行的CNN模型之一,2014年由Simonyan和Zisserman提出,其命名来源于论文作者所在的实验室Visual Geometry Group。AlexNet模型通过构造多层网络,取得了较好的效果,但是并没有给出深度神经网络设计的方向。VGG通过使用一系列大小为3x3的小尺寸卷积核和池化层构造深度卷积神经网络,并取得了较好的效果。VGG模型因为结构简单、应用性极强而广受研究者欢迎,尤其是它的网络结构设计方法,为构建深度神经网络提供了方向。

图3 是VGG-16的网络结构示意图,有13层卷积和3层全连接层。VGG网络的设计严格使用3×33\times 33×3的卷积层和池化层来提取特征,并在网络的最后面使用三层全连接层,将最后一层全连接层的输出作为分类的预测。 在VGG中每层卷积将使用ReLU作为激活函数,在全连接层之后添加dropout来抑制过拟合。使用小的卷积核能够有效地减少参数的个数,使得训练和测试变得更加有效。比如使用两层3×33\times 33×3卷积层,可以得到感受野为5的特征图,而比使用5×55 \times 55×5的卷积层需要更少的参数。由于卷积核比较小,可以堆叠更多的卷积层,加深网络的深度,这对于图像分类任务来说是有利的。VGG模型的成功证明了增加网络的深度,可以更好的学习图像中的特征模式。

PaddleNLP Embedding单模态模型_卷积_03

GoogLeNet

GoogLeNet是2014年ImageNet比赛的冠军,它的主要特点是网络不仅有深度,还在横向上具有“宽度”。由于图像信息在空间尺寸上的巨大差异,如何选择合适的卷积核来提取特征就显得比较困难了。空间分布范围更广的图像信息适合用较大的卷积核来提取其特征;而空间分布范围较小的图像信息则适合用较小的卷积核来提取其特征。为了解决这个问题,GoogLeNet提出了一种被称为Inception模块的方案。

PaddleNLP Embedding单模态模型_全连接_04


第一模块使用一个64通道的7 × 7卷积层。

第二模块使用2个卷积层:首先是64通道的1 × 1卷积层,然后是将通道增大3倍的3 × 3卷积层。

第三模块串联2个完整的Inception块。

第四模块串联了5个Inception块。

第五模块串联了2 个Inception块。

第五模块的后面紧跟输出层,使用全局平均池化层来将每个通道的高和宽变成1,最后接上一个输出个数为标签类别数的全连接层。