文章目录

  • 1.概述
  • 2.Distributed之表查询流程



clickhouse查询返回json python clickhouse select_clickhouse

1.概述


2.Distributed之表查询流程

Distributed表引擎不会真实存储数据,是ClickHouse提供的一个分布式查询引擎,其查询原理大致概括起来就是将server端接收到的查询请求进行重写,并发送到指定的多个server端去执行查询,最终由接到请求的server端进行汇总,最后返回给client端。这个过程可以通过源码来更清晰的了解以下。

首先,从BlockInputStreams StorageDistributed::read方法说起,因为从InterpreterSelectQuery*这类的查询都会调用BlockInputStreams 类型的read方法

BlockInputStreams StorageDistributed::read(
    const Names & /*column_names*/,
    const SelectQueryInfo & query_info,
    const Context & context,
    QueryProcessingStage::Enum processed_stage,
    const size_t /*max_block_size*/,
    const unsigned /*num_streams*/)
{
    auto cluster = getCluster();

    // 获取settings,比如内存最大使用量之类的配置
    const Settings & settings = context.getSettingsRef();

    // 这里就是上面提到过的重写
    const auto & modified_query_ast = rewriteSelectQuery(
        query_info.query, remote_database, remote_table, remote_table_function_ptr);

    // 初始化一个不包含数据的Block
    Block header =
        InterpreterSelectQuery(query_info.query, context, SelectQueryOptions(processed_stage)).getSampleBlock();

    // 根据是使用表函数还是直接使用库表的不同进入不同的逻辑
    ClusterProxy::SelectStreamFactory select_stream_factory = remote_table_function_ptr
        ? ClusterProxy::SelectStreamFactory(
            header, processed_stage, remote_table_function_ptr, context.getExternalTables())
        : ClusterProxy::SelectStreamFactory(
            header, processed_stage, QualifiedTableName{remote_database, remote_table}, context.getExternalTables());

    // 是否自动跳过未使用的shard,如果配置了sharding_key,可以减小查询要搜索的shard范围
    if (settings.optimize_skip_unused_shards)
    {
        if (has_sharding_key)
        {
            auto smaller_cluster = skipUnusedShards(cluster, query_info);

            if (smaller_cluster)
            {
                cluster = smaller_cluster;
                LOG_DEBUG(log, "Reading from " << database_name << "." << table_name << ": "
                               "Skipping irrelevant shards - the query will be sent to the following shards of the cluster (shard numbers): "
                               " " << makeFormattedListOfShards(cluster));
            }
            else
            {
                LOG_DEBUG(log, "Reading from " << database_name << "." << table_name << ": "
                               "Unable to figure out irrelevant shards from WHERE/PREWHERE clauses - the query will be sent to all shards of the cluster");
            }
        }
    }

    // 根据重写的ast执行查询
    return ClusterProxy::executeQuery(
        select_stream_factory, cluster, modified_query_ast, context, settings);
}

read方法主要是sql重写及根据表函数及库表的不同逻辑初始化SelectStreamFactory,executeQuery方法是查询的入口

BlockInputStreams executeQuery(
    IStreamFactory & stream_factory, const ClusterPtr & cluster,
    const ASTPtr & query_ast, const Context & context, const Settings & settings)
{
    BlockInputStreams res;

    // 将重写的ast转为字符串,为了发送给其他server
    const std::string query = queryToString(query_ast);

    // 移除一些上下文的user限制,比如本次触发查询的user在其他server上,对于其他server而言
    // 是个新的user,不会累积统计一些限制
    Context new_context = removeUserRestrictionsFromSettings(context, settings);

    // user限流设置
    ThrottlerPtr user_level_throttler;
    if (auto process_list_element = context.getProcessListElement())
        user_level_throttler = process_list_element->getUserNetworkThrottler();

    // 如果没有配置限制,那么会使用最大带宽
    ThrottlerPtr throttler;
    if (settings.max_network_bandwidth || settings.max_network_bytes)
    {
        throttler = std::make_shared(
                settings.max_network_bandwidth,
                settings.max_network_bytes,
                "Limit for bytes to send or receive over network exceeded.",
                user_level_throttler);
    }
    else
        throttler = user_level_throttler;

    // 为cluster的每个shard上创建stream_factory,并执行查询
    for (const auto & shard_info : cluster->getShardsInfo())
        stream_factory.createForShard(shard_info, query, query_ast, new_context, throttler, res);

    return res;
}

executeQuery方法主要是修改和设置一些配置,接下来是stream_factory的创建了,createForShard是个虚函数,具体实现如下

void SelectStreamFactory::createForShard(
    const Cluster::ShardInfo & shard_info,
    const String & query, const ASTPtr & query_ast,
    const Context & context, const ThrottlerPtr & throttler,
    BlockInputStreams & res)
{
    // 构造一个本地流方法
    auto emplace_local_stream = [&]()
    {
        res.emplace_back(createLocalStream(query_ast, context, processed_stage));
    };

    // 构造一个远程流方法
    auto emplace_remote_stream = [&]()
    {
        auto stream = std::make_shared(shard_info.pool, query, header, context, nullptr, throttler, external_tables, processed_stage);
        stream->setPoolMode(PoolMode::GET_MANY);
        if (!table_func_ptr)
            stream->setMainTable(main_table);
        res.emplace_back(std::move(stream));
    };

    // 获取settings配置
    const auto & settings = context.getSettingsRef();

    // prefer_localhost_replica默认为true,如果shard_info还本地分片,进入以下逻辑
    if (settings.prefer_localhost_replica && shard_info.isLocal())
    {
        StoragePtr main_table_storage;

        // 根据是不是表函数方式使用不同逻辑获取main_table_storage,即一个IStorage
        if (table_func_ptr)
        {
            const auto * table_function = table_func_ptr->as();
            TableFunctionPtr table_function_ptr = TableFunctionFactory::instance().get(table_function->name, context);
            main_table_storage = table_function_ptr->execute(table_func_ptr, context, table_function_ptr->getName());
        }
        else
            main_table_storage = context.tryGetTable(main_table.database, main_table.table);


        // 如果main_table_storage不存在,就尝试去其他server获取
        if (!main_table_storage)
        {
            ProfileEvents::increment(ProfileEvents::DistributedConnectionMissingTable);
            if (shard_info.hasRemoteConnections())
            {
                LOG_WARNING(
                        &Logger::get("ClusterProxy::SelectStreamFactory"),
                        "There is no table " << main_table.database << "." << main_table.table
                        << " on local replica of shard " << shard_info.shard_num << ", will try remote replicas.");
                emplace_remote_stream();
            }
            else
                emplace_local_stream(); 

            return;
        }

        const auto * replicated_storage = dynamic_cast(main_table_storage.get());

        // 如果不是ReplicatedMergeTree引擎表,使用本地server,如果是就要考虑各个副本的
        // 延迟情况,如果延迟不满足会在去寻找其他副本
        if (!replicated_storage)
        {
            emplace_local_stream();
            return;
        }

        UInt64 max_allowed_delay = settings.max_replica_delay_for_distributed_queries;

        // 如果没设置最大延迟,依旧选择本地副本查询
        if (!max_allowed_delay)
        {
            emplace_local_stream();
            return;
        }

        UInt32 local_delay = replicated_storage->getAbsoluteDelay();

        // 如果设置了最大延迟且本地延迟小于最大延迟,本地副本依然有效,选择本地副本
        if (local_delay < max_allowed_delay)
        {
            emplace_local_stream();
            return;
        }

        // 如果以上逻辑都没有进入,说明已经不满足延迟条件了,会执行以下代码
        ProfileEvents::increment(ProfileEvents::DistributedConnectionStaleReplica);
        LOG_WARNING(
            &Logger::get("ClusterProxy::SelectStreamFactory"),
            "Local replica of shard " << shard_info.shard_num << " is stale (delay: " << local_delay << "s.)");
        
        // 如果没有这是fallback,就不能使用本地副本,去尝试获取远程副本
        if (!settings.fallback_to_stale_replicas_for_distributed_queries)
        {
            if (shard_info.hasRemoteConnections())
            {
                emplace_remote_stream();
                return;
            }
            else
                throw Exception(
                    "Local replica of shard " + toString(shard_info.shard_num)
                    + " is stale (delay: " + toString(local_delay) + "s.), but no other replica configured",
                    ErrorCodes::ALL_REPLICAS_ARE_STALE);
        }

        // 如果没有远程副本可选,而且设置了fallback,则才会选择本地副本
        if (!shard_info.hasRemoteConnections())
        {
            emplace_local_stream();
            return;
        }

        // 构造lazily_create_stream方法,避免在主线程中进行连接
        auto lazily_create_stream = [
                pool = shard_info.pool, shard_num = shard_info.shard_num, query, header = header, query_ast, context, throttler,
                main_table = main_table, table_func_ptr = table_func_ptr, external_tables = external_tables, stage = processed_stage,
                local_delay]()
            -> BlockInputStreamPtr
        {
            auto current_settings = context.getSettingsRef();
            auto timeouts = ConnectionTimeouts::getTCPTimeoutsWithFailover(
                current_settings).getSaturated(
                    current_settings.max_execution_time);
            std::vector try_results;
            try
            {
                // 这里会去远端获取entry,getManyForTableFunction和getManyChecked方法
                // 最后都会调用getManyImpl方法,只不过传入的TryGetEntryFunc不同
                if (table_func_ptr)
                    try_results = pool->getManyForTableFunction(timeouts, ¤t_settings, PoolMode::GET_MANY);
                else
                    try_results = pool->getManyChecked(timeouts, ¤t_settings, PoolMode::GET_MANY, main_table);
            }
            catch (const Exception & ex)
            {
                if (ex.code() == ErrorCodes::ALL_CONNECTION_TRIES_FAILED)
                    LOG_WARNING(
                        &Logger::get("ClusterProxy::SelectStreamFactory"),
                        "Connections to remote replicas of local shard " << shard_num << " failed, will use stale local replica");
                else
                    throw;
            }

            double max_remote_delay = 0.0;
            for (const auto & try_result : try_results)
            {
                if (!try_result.is_up_to_date)
                    max_remote_delay = std::max(try_result.staleness, max_remote_delay);
            }

            // 下面是将得到的result进行聚合
            if (try_results.empty() || local_delay < max_remote_delay)
                return createLocalStream(query_ast, context, stage);
            else
            {
                std::vector connections;
                connections.reserve(try_results.size());
                for (auto & try_result : try_results)
                    connections.emplace_back(std::move(try_result.entry));

                return std::make_shared(
                    std::move(connections), query, header, context, nullptr, throttler, external_tables, stage);
            }
        };

        res.emplace_back(std::make_shared("LazyShardWithLocalReplica", header, lazily_create_stream));
    }
    else
        emplace_remote_stream();
}

createForShard主要是决定选择本地还是远程副本的问题,下面继续看下getManyImpl方法

std::vector ConnectionPoolWithFailover::getManyImpl(
        const Settings * settings,
        PoolMode pool_mode,
        const TryGetEntryFunc & try_get_entry)
{
    // 决定获取entries的数量
    size_t min_entries = (settings && settings->skip_unavailable_shards) ? 0 : 1;
    size_t max_tries = (settings ?
        size_t{settings->connections_with_failover_max_tries} :
        size_t{DBMS_CONNECTION_POOL_WITH_FAILOVER_DEFAULT_MAX_TRIES});
    size_t max_entries;
    if (pool_mode == PoolMode::GET_ALL)
    {
        min_entries = nested_pools.size();
        max_entries = nested_pools.size();
    }
    else if (pool_mode == PoolMode::GET_ONE)
        max_entries = 1;
    else if (pool_mode == PoolMode::GET_MANY)
        max_entries = settings ? size_t(settings->max_parallel_replicas) : 1;
    else
        throw DB::Exception("Unknown pool allocation mode", DB::ErrorCodes::LOGICAL_ERROR);

    // 获取策略,NEAREST_HOSTNAME、IN_ORDER、RANDOM、FIRST_OR_RANDOM
    GetPriorityFunc get_priority;
    switch (settings ? LoadBalancing(settings->load_balancing) : default_load_balancing)
    {
    case LoadBalancing::NEAREST_HOSTNAME:
        get_priority = [&](size_t i) { return hostname_differences[i]; };
        break;
    case LoadBalancing::IN_ORDER:
        get_priority = [](size_t i) { return i; };
        break;
    case LoadBalancing::RANDOM:
        break;
    case LoadBalancing::FIRST_OR_RANDOM:
        get_priority = [](size_t i) -> size_t { return i >= 1; };
        break;
    }

    bool fallback_to_stale_replicas = settings ? bool(settings->fallback_to_stale_replicas_for_distributed_queries) : true;

    return Base::getMany(min_entries, max_entries, max_tries, try_get_entry, get_priority, fallback_to_stale_replicas);
}

getManyImpl方法主要是决定用多少entries以及远程副本的策略,继续看getMany方法

PoolWithFailoverBase::getMany(
        size_t min_entries, size_t max_entries, size_t max_tries,
        const TryGetEntryFunc & try_get_entry,
        const GetPriorityFunc & get_priority,
        bool fallback_to_stale_replicas)
{
    ......
        
    std::string fail_messages;
    bool finished = false;
    while (!finished)
    {
        for (size_t i = 0; i < shuffled_pools.size(); ++i)
        {
            if (up_to_date_count >= max_entries 
                || entries_count + failed_pools_count >= nested_pools.size()) 
            {
                finished = true;
                break;
            }

            ShuffledPool & shuffled_pool = shuffled_pools[i];
            TryResult & result = try_results[i];
            if (shuffled_pool.error_count >= max_tries || !result.entry.isNull())
                continue;

            std::string fail_message;
            // 这里就是调用了上面提到的TryGetEntryFunc方法来真正的获取entry
            result = try_get_entry(*shuffled_pool.pool, fail_message);

            if (!fail_message.empty())
                fail_messages += fail_message + '\n';

            if (!result.entry.isNull())
            {
                ++entries_count;
                if (result.is_usable)
                {
                    ++usable_count;
                    if (result.is_up_to_date)
                        ++up_to_date_count;
                }
            }
            else
            {
                LOG_WARNING(log, "Connection failed at try №"
                            << (shuffled_pool.error_count + 1) << ", reason: " << fail_message);
                ProfileEvents::increment(ProfileEvents::DistributedConnectionFailTry);

                shuffled_pool.error_count = std::min(max_error_cap, shuffled_pool.error_count + 1);

                if (shuffled_pool.error_count >= max_tries)
                {
                    ++failed_pools_count;
                    ProfileEvents::increment(ProfileEvents::DistributedConnectionFailAtAll);
                }
            }
        }
    }

    if (usable_count < min_entries)
        throw DB::NetException(
                "All connection tries failed. Log: \n\n" + fail_messages + "\n",
                DB::ErrorCodes::ALL_CONNECTION_TRIES_FAILED);

    try_results.erase(
            std::remove_if(
                    try_results.begin(), try_results.end(),
                    [](const TryResult & r) { return r.entry.isNull() || !r.is_usable; }),
            try_results.end());

    // 以下代码主要是对结果进行排序
    std::stable_sort(
            try_results.begin(), try_results.end(),
            [](const TryResult & left, const TryResult & right)
            {
                return std::forward_as_tuple(!left.is_up_to_date, left.staleness)
                    < std::forward_as_tuple(!right.is_up_to_date, right.staleness);
            });

    ......

    return try_results;
}

getMany方法就是真正获取entry并进行排序的过程,至此,Distributed表的查询的大体流程就完整了。