一主多从主要应用与读写分离,一般情况下写主库,从多个从库读数据,主库与从库之间进行数据同步,但是由于主从同步之间有延时,这样在主库写完数据,从从库查询数据可能会出现过期读问题。
读写分离的基本结构
客户端直连
图1 读写分离基本结构
读写分离的主要目标就是分摊主库的压力。图1中的结构是客户端(client)主动做负载均衡,这种模式下一般会把数据库的连接信息放在客户端的连接层。也就是说,由客户端来选择后端数据库进行查询。
proxy模式
在MySQL和客户端之间有一个中间代理层proxy,客户端只连接proxy, 由proxy根据请求类型和上下文决定请求的分发路由。
图2 带proxy的读写分离架构
客户端直连和带proxy的读写分离架构
- 客户端直连方案,因为少了一层proxy转发,所以查询性能稍微好一点儿,并且整体架构简单,排查问题更方便。但是这种方案,由于要了解后端部署细节,所以在出现主备切换、库迁移等操作的时候,客户端都会感知到,并且需要调整数据库连接信息。
一般采用这样的架构,一定会伴随一个负责管理后端的组件,比如Zookeeper,尽量让业务端只专注于业务逻辑开发。 - 带proxy的架构,对客户端比较友好。客户端不需要关注后端细节,连接维护、后端信息维护等工作,都是由proxy完成的。proxy也需要有高可用架构。
由于主从可能存在延迟,客户端执行完一个更新事务后马上发起查询,如果查询选择的是从库的话,就有可能读到刚刚的事务更新之前的状态。这种“在从库上会读到系统的一个过期状态”的现象,在这篇文章里,我们暂且称之为“过期读”。
前面我们说过了几种可能导致主备延迟的原因,以及对应的优化策略,但是主从延迟还是不能100%避免的。
不论哪种结构,客户端都希望查询从库的数据结果,跟查主库的数据结果是一样的。
过期读问题
解决方案:
- 强制走主库方案;
- sleep方案;
- 判断主备无延迟方案;
- 配合semi-sync方案;
- 等主库位点方案;
- 等GTID方案。
强制走主库方案
强制走主库方案其实就是,将查询请求做分类。通常情况下,我们可以将查询请求分为这么两类:
- 对于必须要拿到最新结果的请求,强制将其发到主库上。比如,在一个交易平台上,卖家发布商品以后,马上要返回主页面,看商品是否发布成功。那么,这个请求需要拿到最新的结果,就必须走主库。
- 对于可以读到旧数据的请求,才将其发到从库上。在这个交易平台上,买家来逛商铺页面,就算晚几秒看到最新发布的商品,也是可以接受的。那么,这类请求就可以走从库。
Sleep 方案
主库更新后,读从库之前先sleep一下。具体的方案就是,类似于执行一条select sleep(1)命令。
这个方案的假设是,大多数情况下主备延迟在1秒之内,做一个sleep可以有很大概率拿到最新的数据。
从严格意义上来说,这个方案存在的问题就是不精确。这个不精确包含了两层意思:
- 如果这个查询请求本来0.5秒就可以在从库上拿到正确结果,也会等1秒;
- 如果延迟超过1秒,还是会出现过期读。
判断主备无延迟方案
要确保备库无延迟,通常有三种做法。
show slave status结果里的seconds_behind_master参数的值,可以用来衡量主备延迟时间的长短。
第一种确保主备无延迟的方法是,每次从库执行查询请求前,先判断seconds_behind_master是否已经等于0。如果还不等于0 ,那就必须等到这个参数变为0才能执行查询请求。
seconds_behind_master的单位是秒,如果你觉得精度不够的话,还可以采用对比位点和GTID的方法来确保主备无延迟,
如图3所示,是一个show slave status结果的部分截图。
图3 show slave status结果
现在,我们就通过这个结果,来看看具体如何通过对比位点和GTID来确保主备无延迟。
第二种方法,对比位点确保主备无延迟:
- Master_Log_File和Read_Master_Log_Pos,表示的是读到的主库的最新位点;
- Relay_Master_Log_File和Exec_Master_Log_Pos,表示的是备库执行的最新位点。
如果Master_Log_File和Relay_Master_Log_File、Read_Master_Log_Pos和Exec_Master_Log_Pos这两组值完全相同,就表示接收到的日志已经同步完成。
第三种方法,对比GTID集合确保主备无延迟:
- Auto_Position=1 ,表示这对主备关系使用了GTID协议。
- Retrieved_Gtid_Set,是备库收到的所有日志的GTID集合;
- Executed_Gtid_Set,是备库所有已经执行完成的GTID集合。
如果这两个集合相同,也表示备库接收到的日志都已经同步完成。
可见,对比位点和对比GTID这两种方法,都要比判断seconds_behind_master是否为0更准确。
在执行查询请求之前,先判断从库是否同步完成的方法,相比于sleep方案,准确度确实提升了不少,但还是没有达到“精确”的程度。为什么这么说呢?
我们现在一起来回顾下,一个事务的binlog在主备库之间的状态:
- 主库执行完成,写入binlog,并反馈给客户端;
- binlog被从主库发送给备库,备库收到;
- 在备库执行binlog完成。
上面判断主备无延迟的逻辑,是“备库收到的日志都执行完成了”。但是,从binlog在主备之间状态的分析中,不难看出还有一部分日志,处于客户端已经收到提交确认,而备库还没收到日志的状态。
如图4所示就是这样的一个状态。
图4 备库还没收到trx3
这时,主库上执行完成了三个事务trx1、trx2和trx3,其中:
- trx1和trx2已经传到从库,并且已经执行完成了;
- trx3在主库执行完成,并且已经回复给客户端,但是还没有传到从库中。
如果这时候你在从库B上执行查询请求,按照我们上面的逻辑,从库认为已经没有同步延迟,但还是查不到trx3的。严格地说,就是出现了过期读。
配合semi-sync
要解决这个问题,就要引入半同步复制,也就是semi-sync replication。
semi-sync做了这样的设计:
- 事务提交的时候,主库把binlog发给从库;
- 从库收到binlog以后,发回给主库一个ack,表示收到了;
- 主库收到这个ack以后,才能给客户端返回“事务完成”的确认。
也就是说,如果启用了semi-sync,就表示所有给客户端发送过确认的事务,都确保了备库已经收到了这个日志。
semi-sync配合前面关于位点的判断,就能够确定在从库上执行的查询请求,可以避免过期读。
但是,semi-sync+位点判断的方案,只对一主一备的场景是成立的。在一主多从场景中,主库只要等到一个从库的ack,就开始给客户端返回确认。这时,在从库上执行查询请求,就有两种情况:
- 如果查询是落在这个响应了ack的从库上,是能够确保读到最新数据;
- 但如果是查询落到其他从库上,它们可能还没有收到最新的日志,就会产生过期读的问题。
其实,判断同步位点的方案还有另外一个潜在的问题,即:如果在业务更新的高峰期,主库的位点或者GTID集合更新很快,那么上面的两个位点等值判断就会一直不成立,很可能出现从库上迟迟无法响应查询请求的情况。
实际上,回到我们最初的业务逻辑里,当发起一个查询请求以后,我们要得到准确的结果,其实并不需要等到“主备完全同步”。
图5 主备持续延迟一个事务
图5所示,就是等待位点方案的一个bad case。图中备库B下的虚线框,分别表示relaylog和binlog中的事务。可以看到,图5中从状态1 到状态4,一直处于延迟一个事务的状态。
备库B一直到状态4都和主库A存在延迟,如果用上面必须等到无延迟才能查询的方案,select语句直到状态4都不能被执行。
但是,其实客户端是在发完trx1更新后发起的select语句,我们只需要确保trx1已经执行完成就可以执行select语句了。也就是说,如果在状态3执行查询请求,得到的就是预期结果了。
semi-sync配合判断主备无延迟的方案,存在两个问题:
- 一主多从的时候,在某些从库执行查询请求会存在过期读的现象;
- 在持续延迟的情况下,可能出现过度等待的问题。
等主库位点方案
select master_pos_wait(file, pos[, timeout]);
这条命令的逻辑如下:
- 它是在从库执行的;
- 参数file和pos指的是主库上的文件名和位置;
- timeout可选,设置为正整数N表示这个函数最多等待N秒。
这个命令正常返回的结果是一个正整数M,表示从命令开始执行,到应用完file和pos表示的binlog位置,执行了多少事务。
当然,除了正常返回一个正整数M外,这条命令还会返回一些其他结果,包括:
- 如果执行期间,备库同步线程发生异常,则返回NULL;
- 如果等待超过N秒,就返回-1;
- 如果刚开始执行的时候,就发现已经执行过这个位置了,则返回0。
对于图5中先执行trx1,再执行一个查询请求的逻辑,要保证能够查到正确的数据,我们可以使用这个逻辑:
- trx1事务更新完成后,马上执行show master status得到当前主库执行到的File和Position;
- 选定一个从库执行查询语句;
- 在从库上执行select master_pos_wait(File, Position, 1);
- 如果返回值是>=0的正整数,则在这个从库执行查询语句;
- 否则,到主库执行查询语句。
图6 master_pos_wait方案
这里假设,这条select查询最多在从库上等待1秒。那么,如果1秒内master_pos_wait返回一个大于等于0的整数,就确保了从库上执行的这个查询结果一定包含了trx1的数据。
步骤5到主库执行查询语句,是这类方案常用的退化机制。因为从库的延迟时间不可控,不能无限等待,所以如果等待超时,就应该放弃,然后到主库去查。
GTID方案
如果数据库开启了GTID模式,对应的也有等待GTID的方案。
MySQL中同样提供了一个类似的命令:
select wait_for_executed_gtid_set(gtid_set, 1);
这条命令的逻辑是:
- 等待,直到这个库执行的事务中包含传入的gtid_set,返回0;
- 超时返回1。
在前面等位点的方案中,我们执行完事务后,还要主动去主库执行show master status。而MySQL 5.7.6版本开始,允许在执行完更新类事务后,把这个事务的GTID返回给客户端,这样等GTID的方案就可以减少一次查询。
这时,等GTID的执行流程就变成了:
- trx1事务更新完成后,从返回包直接获取这个事务的GTID,记为gtid1;
- 选定一个从库执行查询语句;
- 在从库上执行 select wait_for_executed_gtid_set(gtid1, 1);
- 如果返回值是0,则在这个从库执行查询语句;
- 否则,到主库执行查询语句。
跟等主库位点的方案一样,等待超时后是否直接到主库查询,需要业务开发同学来做限流考虑。
图7 wait_for_executed_gtid_set方案
在上面的第一步中,trx1事务更新完成后,从返回包直接获取这个事务的GTID。问题是,怎么能够让MySQL在执行事务后,返回包中带上GTID呢?
你只需要将参数session_track_gtids设置为OWN_GTID,然后通过API接口mysql_session_track_get_first从返回包解析出GTID的值即可。
即使是最后等待位点和等待GTID这两个方案,仍然存在需要权衡的情况。如果所有的从库都延迟,那么请求就会全部落到主库上,这时候会不会由于压力突然增大,会把主库打挂。
先在客户端对请求做分类,区分哪些请求可以接受过期读,而哪些请求完全不能接受过期读;然后,对于不能接受过期读的语句,再使用等GTID或等位点的方案。过期读在本质上是由一写多读导致的。在实际应用中,可能会有别的不需要等待就可以水平扩展的数据库方案,但这往往是用牺牲写性能换来的,也就是需要在读性能和写性能中取权衡。
假设系统采用等GTID的方案,现在对主库的一张大表做DDL,可能会出现什么情况
假设,这条语句在主库上要执行10分钟,提交后传到备库就要10分钟(典型的大事务)。那么,在主库DDL之后再提交的事务的GTID,去备库查的时候,就会等10分钟才出现。这样,这个读写分离机制在这10分钟之内都会超时,然后走主库。这种预期内的操作,应该在业务低峰期的时候,确保主库能够支持所有业务查询,然后把读请求都切到主库,再在主库上做DDL。等备库延迟追上以后,再把读请求切回备库。避免大事务。