sql和mysql执行顺序,发现内部机制是一样的。最大区别是在别名的引用上。 

一、sql执行顺序 
(1)from 
(3) join 
(2) on 
(4) where 
(5)group by(开始使用select中的别名,后面的语句中都可以使用)
(6) avg,sum.... 
(7)having 
(8) select 
(9) distinct 
(10) order by 

从这个顺序中我们不难发现,所有的 查询语句都是从from开始执行的,在执行过程中,每个步骤都会为下一个步骤生成一个虚拟表,这个虚拟表将作为下一个执行步骤的输入。 
第一步:首先对from子句中的前两个表执行一个笛卡尔乘积,此时生成虚拟表 vt1(选择相对小的表做基础表) 
第二步:接下来便是应用on筛选器,on 中的逻辑表达式将应用到 vt1 中的各个行,筛选出满足on逻辑表达式的行,生成虚拟表 vt2 
第三步:如果是outer join 那么这一步就将添加外部行,left outer jion 就把左表在第二步中过滤的添加进来,如果是right outer join 那么就将右表在第二步中过滤掉的行添加进来,这样生成虚拟表 vt3 
第四步:如果 from 子句中的表数目多余两个表,那么就将vt3和第三个表连接从而计算笛卡尔乘积,生成虚拟表,该过程就是一个重复1-3的步骤,最终得到一个新的虚拟表 vt3。 
第五步:应用where筛选器,对上一步生产的虚拟表引用where筛选器,生成虚拟表vt4,在这有个比较重要的细节不得不说一下,对于包含outer join子句的查询,就有一个让人感到困惑的问题,到底在on筛选器还是用where筛选器指定逻辑表达式呢?on和where的最大区别在于,如果在on应用逻辑表达式那么在第三步outer join中还可以把移除的行再次添加回来,而where的移除的最终的。举个简单的例子,有一个学生表(班级,姓名)和一个成绩表(姓名,成绩),我现在需要返回一个x班级的全体同学的成绩,但是这个班级有几个学生缺考,也就是说在成绩表中没有记录。为了得到我们预期的结果我们就需要在on子句指定学生和成绩表的关系(学生.姓名=成绩.姓名)那么我们是否发现在执行第二步的时候,对于没有参加考试的学生记录就不会出现在vt2中,因为他们被on的逻辑表达式过滤掉了,但是我们用left outer join就可以把左表(学生)中没有参加考试的学生找回来,因为我们想返回的是x班级的所有学生,如果在on中应用学生.班级='x'的话,left outer join会把x班级的所有学生记录找回,所以只能在where筛选器中应用学生.班级='x' 因为它的过滤是最终的。 
第六步:group by 子句将中的唯一的值组合成为一组,得到虚拟表vt5。如果应用了group by,那么后面的所有步骤都只能得到的vt5的列或者是聚合函数(count、sum、avg等)。原因在于最终的结果集中只为每个组包含一行。这一点请牢记。 
第七步:应用cube或者rollup选项,为vt5生成超组,生成vt6. 
第八步:应用having筛选器,生成vt7。having筛选器是第一个也是为唯一一个应用到已分组数据的筛选器。 
第九步:处理select子句。将vt7中的在select中出现的列筛选出来。生成vt8. 
第十步:应用distinct子句,vt8中移除相同的行,生成vt9。事实上如果应用了group by子句那么distinct是多余的,原因同样在于,分组的时候是将列中唯一的值分成一组,同时只为每一组返回一行记录,那么所以的记录都将是不相同的。 
第十一步:应用order by子句。按照order_by_condition排序vt9,此时返回的一个游标,而不是虚拟表。sql是基于集合的理论的,集合不会预先对他的行排序,它只是成员的逻辑集合,成员的顺序是无关紧要的。对表进行排序的查询可以返回一个对象,这个对象包含特定的物理顺序的逻辑组织。这个对象就叫游标。正因为返回值是游标,那么使用order by 子句查询不能应用于表表达式。排序是很需要成本的,除非你必须要排序,否则最好不要指定order by,最后,在这一步中是第一个也是唯一一个可以使用select列表中别名的步骤。 
第十二步:应用top选项。此时才返回结果给请求者即用户。 

二、mysql的执行顺序 
SELECT语句定义 
一个完成的SELECT语句包含可选的几个子句。SELECT语句的定义如下: 
SQL代码

<SELECT clause> [<FROM clause>] [<WHERE clause>] [<GROUP BY clause>] [<HAVING clause>] [<ORDER BY clause>] [<LIMIT clause>]   


SELECT子句是必选的,其它子句如WHERE子句、GROUP BY子句等是可选的。 


一个SELECT语句中,子句的顺序是固定的。例如GROUP BY子句不会位于WHERE子句的前面。 



SELECT语句执行顺序 


SELECT语句中子句的执行顺序与SELECT语句中子句的输入顺序是不一样的,所以并不是从SELECT子句开始执行的,而是按照下面的顺序执行: 


开始->FROM子句->WHERE子句->GROUP BY子句->HAVING子句->ORDER BY子句->SELECT子句->LIMIT子句->最终结果 


每个子句执行后都会产生一个中间结果,供接下来的子句使用,如果不存在某个子句,就跳过 


对比了一下,mysql和sql执行顺序基本是一样的, 标准顺序的 SQL 语句为: 



select 考生姓名, max(总成绩) as max总成绩   from tb_Grade   where 考生姓名 is not null   group by 考生姓名   having max(总成绩) >



 在上面的示例中 SQL 语句的执行顺序如下: 



   (1). 首先执行 FROM 子句, 从 tb_Grade 表组装数据源的数据 



   (2). 执行 WHERE 子句, 筛选 tb_Grade 表中所有数据不为 NULL 的数据 



注:这一步开始才可以使用select中的别名,他返回的是一个游标,而不是一个表,所以在where中不可以使用select中的别名,而having却可以使用)



   (4). 计算 max() 聚集函数, 按 "总成绩" 求出总成绩中最大的一些数值 



   (5). 执行 HAVING 子句, 筛选课程的总成绩大于 600 分的. 



   (7). 执行 ORDER BY 子句, 把最后的结果按 "Max 成绩" 进行排序.

一些注意点:


ORDER BY这一步不同于其它步骤的是,它不返回有效的表,而是返回一个游标。SQL是基于集合理论的。集合不会预先对它的行排序,它只是成员的逻辑集合,成员的顺序无关紧要。对表进行排序的查询返回一个对象,包含按特定物理顺序组织的行。ANSI把这种对象称为游标。理解这一步是正确理解SQL的基础。

因为这一步不返回表(而是返回游标),使用了ORDER BY子句的查询不能用作表表达式。表表达式包括:视图、内联表值函数、子查询、派生表和共用表达式。它的结果必须返回给期望得到物理记录的客户端应用程序。例如,下面的派生表查询无效,并产生一个错误:


select * 
from(select orderid,customerid from orders order by orderid) 
as d


下面的视图也会产生错误:


create view my_view
as
select *
from orders
order by orderid

在SQL中,表表达式中不允许使用带有ORDER BY子句的查询

接下来结合具体的示例再看看:

SQL 不同于与其他编程语言的最明显特征是处理代码的顺序。在大数编程语言中,代码按编码顺序被处理,但是在SQL语言中,第一个被处理的子句是FROM子句,尽管SELECT语句第一个出现,但是几乎总是最后被处理。

      每个步骤都会产生一个虚拟表,该虚拟表被用作下一个步骤的输入。这些虚拟表对调用者(客户端应用程序或者外部查询)不可用。只是最后一步生成的表才会返回 给调用者。如果没有在查询中指定某一子句,将跳过相应的步骤。

首先创建两张工作表table1记录用户信息,table2记录订单信息


mysql> select * from table1;
 +-------------+----------+
 | customer_id | city     |
 +-------------+----------+
 | 163         | hangzhou |
 | 9you        | shanghai |
 | baidu       | hangzhou |
 | tx          | hangzhou |
 +-------------+----------+
 4 rows in set (0.00 sec)

 mysql> select * from table2;
 +----------+-------------+
 | order_id | customer_id |
 +----------+-------------+
 |        1 | 163         |
 |        2 | 163         |
 |        3 | 9you        |
 |        4 | 9you        |
 |        5 | 9you        |
 |        6 | tx          |
 |        7 | NULL        |
 +----------+-------------+
 7 rows in set (0.00 sec)

写帮助我们进行测试的SQL语句:


SELECT a.customer_id, COUNT(b.order_id) as total_orders
 FROM table1 AS a
 LEFT JOIN table2 AS b
 ON a.customer_id = b.customer_id
 WHERE a.city = 'hangzhou'
 GROUP BY a.customer_id
 HAVING count(b.order_id) < 2
 ORDER BY total_orders DESC;

查询在hangzhou订单数量少于2的客户id并按照订单数量倒排序。


第一步,执行FROM语句。我们首先需要知道最开始从哪个表开始的,这就是FROM告诉我们的。现在有了<left_table><right_table>两个表,我们到底从哪个表开始,还是从两个表进行某种联系以后再开始呢?它们之间如何产生联系呢?——笛卡尔积。笛卡尔积简单介绍:假设集合A={a, b},集合B={0, 1, 2},则两个集合的笛卡尔积为{(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}。那么经过FROM语句对两个表执行笛卡尔积,会得到一个虚拟表,暂且叫VT1(vitual table 1),内容如下:


+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 9you        | shanghai |        1 | 163         |
| baidu       | hangzhou |        1 | 163         |
| tx          | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        2 | 163         |
| baidu       | hangzhou |        2 | 163         |
| tx          | hangzhou |        2 | 163         |
| 163         | hangzhou |        3 | 9you        |
| 9you        | shanghai |        3 | 9you        |
| baidu       | hangzhou |        3 | 9you        |
| tx          | hangzhou |        3 | 9you        |
| 163         | hangzhou |        4 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| baidu       | hangzhou |        4 | 9you        |
| tx          | hangzhou |        4 | 9you        |
| 163         | hangzhou |        5 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| baidu       | hangzhou |        5 | 9you        |
| tx          | hangzhou |        5 | 9you        |
| 163         | hangzhou |        6 | tx          |
| 9you        | shanghai |        6 | tx          |
| baidu       | hangzhou |        6 | tx          |
| tx          | hangzhou |        6 | tx          |
| 163         | hangzhou |        7 | NULL        |
| 9you        | shanghai |        7 | NULL        |
| baidu       | hangzhou |        7 | NULL        |
| tx          | hangzhou |        7 | NULL        |
+-------------+----------+----------+-------------+

总共有28(table1的记录条数 * table2的记录条数)条记录。这就是VT1的结果,接下来的操作就在VT1的基础上进行。



第二步,执行完笛卡尔积以后,接着就进行ON过滤: a.customer_id = b.customer_id条件过滤,根据ON中指定的条件,去掉那些不符合条件的数据,得到VT2表,内容如下:


+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        3 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| tx          | hangzhou |        6 | tx          |
+-------------+----------+----------+-------------+

VT2就是经过

ON条件筛选以后得到的有用数据,而接下来的操作将在VT2的基础上继续进行。


第三步,添加外部行。

这一步只有在连接类型为OUTER JOIN时才发生,如LEFT OUTER JOINRIGHT OUTER JOINFULL OUTER JOIN。在大多数的时候,我们都是会省略掉OUTER关键字的,但OUTER表示的就是外部行的概念。

添加外部行的工作就是在VT2表的基础上添加保留表中被过滤条件过滤掉的数据,非保留表中的数据被赋予NULL值,最后生成虚拟表VT3。

LEFT OUTER JOIN把左表记为保留表,得到的结果为:

+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        3 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| tx          | hangzhou |        6 | tx          |
| baidu       | hangzhou |     NULL | NULL        |
+-------------+----------+----------+-------------+

RIGHT OUTER JOIN把右表记为保留表,得到的结果为:


sql语句在mysql的执行过程 mysql的sql执行顺序_sql语句在mysql的执行过程


+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        3 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| tx          | hangzhou |        6 | tx          |
| NULL        | NULL     |        7 | NULL        |
+-------------+----------+----------+-------------+


FULL OUTER JOIN把左右表都作为保留表,得到的结果为:

+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        3 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| tx          | hangzhou |        6 | tx          |
| baidu       | hangzhou |     NULL | NULL        |
| NULL        | NULL     |        7 | NULL        |
+-------------+----------+----------+-------------+

再强调一次,添加外部行的工作就是在VT2表的基础上添加保留表中被过滤条件过滤掉的数据,非保留表中的数据被赋予NULL值,最后生成虚拟表VT3。

由于我在准备的测试SQL查询逻辑语句中使用的是

LEFT JOIN(省略掉了outer的左外连接),因此得到的VT3表如下:


+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| 9you        | shanghai |        3 | 9you        |
| 9you        | shanghai |        4 | 9you        |
| 9you        | shanghai |        5 | 9you        |
| tx          | hangzhou |        6 | tx          |
| baidu       | hangzhou |     NULL | NULL        |
+-------------+----------+----------+-------------+

接下来的操作都会在该VT3表上进行。

第四步,对添加外部行得到的VT3进行WHERE过滤,只有符合<where_condition>的记录才会输出到虚拟表VT4中。当我们执行WHERE a.city = 'hangzhou'的时候,就会得到以下内容,并存在虚拟表VT4中:

+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| 163         | hangzhou |        1 | 163         |
| 163         | hangzhou |        2 | 163         |
| tx          | hangzhou |        6 | tx          |
| baidu       | hangzhou |     NULL | NULL        |
+-------------+----------+----------+-------------+

但是在使用WHERE子句时,需要注意以下两点:

  1. 由于数据还没有分组,因此现在还不能在WHERE过滤器中使用where_condition=MIN(col)这类对分组统计的过滤
  2. 由于还没有进行列的选取操作,因此在SELECT中使用列的别名也是不被允许的,如:SELECT city as c FROM t WHERE c='shanghai';是不允许出现的。

得到的内容会存入虚拟表VT5中,此时,我们就得到了一个VT5虚拟表,接下来的操作都会在该表上完成。

第五步,

HAVING子句主要和

GROUP BY子句配合使用对分组得到的VT5虚拟表进行条件过滤。当我执行测试语句中的

HAVING count(b.order_id) < 2时,将得到以下内容:

+-------------+----------+----------+-------------+
| customer_id | city     | order_id | customer_id |
+-------------+----------+----------+-------------+
| baidu       | hangzhou |     NULL | NULL        |
| tx          | hangzhou |        6 | tx          |
+-------------+----------+----------+-------------+

这就是虚拟表VT6。

第六步,执行到SELECT子句,所以不要以为SELECT子句被写在第一行,就是第一个被执行的。

我们执行测试语句中的SELECT a.customer_id, COUNT(b.order_id) as total_orders,从虚拟表VT6中选择出我们需要的内容。我们将得到以下内容:

+-------------+--------------+
| customer_id | total_orders |
+-------------+--------------+
| baidu       |            0 |
| tx          |            1 |
+-------------+--------------+

此时得到虚拟表VT7。

第七步,如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT7是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。

由于测试的SQL语句中并没有使用DISTINCT,所以,在该查询中,这一步不会生成一个虚拟表。

第八步,对虚拟表中的内容按照指定的列进行排序,执行测试SQL语句中的

ORDER BY total_orders DESC,就会得到以下内容:

+-------------+--------------+
| customer_id | total_orders |
+-------------+--------------+
| tx          |            1 |
| baidu       |            0 |
+-------------+--------------+

可以看到这是对total_orders列进行降序排列的。


第九步,LIMIT子句从上一步得到的结果中选出从指定位置开始的指定行数据。很多时候,我们都会看到LIMIT子句会和ORDER BY子句一起使用。

MySQL数据库的LIMIT支持如下形式的选择:


LIMIT n, m


表示从第n条记录开始选择m条记录。而很多开发人员喜欢使用该语句来解决分页问题。对于小数据,使用LIMIT子句没有任何问题,当数据量非常大的时候,使用LIMIT n, m是非常低效的。因为LIMIT的机制是每次都是从头开始扫描,如果需要从第60万行开始,读取3条数据,就需要先扫描定位到60万行,然后再进行读取,而扫描的过程是一个非常低效的过程。所以,对于大数据处理时,是非常有必要在应用层建立一定的缓存机制(貌似现在的大数据处理,都有缓存哦)。