一、介绍
内容
使机器能够“举一反三”的能力
知识点
- 使用 PyTorch 的数据集套件从本地加载数据的方法
- 迁移训练好的大型神经网络模型到自己模型中的方法
- 迁移学习与普通深度学习方法的效果区别
- 两种迁移学习方法的区别
二、从图片文件中加载训练数据
引入相关包
下载网盘链接:https://pan.baidu.com/s/1OgknV6OUB-27DED6KSZ0iA 提取码:ekc9
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import copy
import os
从硬盘文件夹中加载图像数据集
使用 datasets 的 ImageFolder 方法就可以实现自动加载以上数据
# 数据存储总路径
data_dir = 'transfer-data'
# 图像的大小为224*224
image_size = 224
# 从data_dir/train加载文件
# 加载的过程将会对图像自动作如下的图像增强操作:
# 1. 随机从原始图像中切下来一块224*224大小的区域
# 2. 随机水平翻转图像
# 3. 将图像的色彩数值标准化
train_dataset = datasets.ImageFolder(os.path.join(data_dir, 'train'),
transforms.Compose([
transforms.RandomResizedCrop(image_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
)
# 加载校验数据集,对每个加载的数据进行如下处理:
# 1. 放大到256*256像素
# 2. 从中心区域切割下224*224大小的图像区域
# 3. 将图像的色彩数值标准化
val_dataset = datasets.ImageFolder(os.path.join(data_dir, 'val'),
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
)
数据集的作用并不是进行数据的读取和迭代,所以下面要为每个数据集创建数据加载器。
# 创建相应的数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size = 4, shuffle = True, num_workers=4)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size = 4, shuffle = True, num_workers=4)
# 读取得出数据中的分类类别数
# 如果只有蜜蜂和蚂蚁,那么是2
num_classes = len(train_dataset.classes)
num_classes
关于 GPU 运算
# 检测本机器是否安装GPU,将检测结果记录在布尔变量use_cuda中
use_cuda = torch.cuda.is_available()
# 当可用GPU的时候,将新建立的张量自动加载到GPU中
dtype = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
itype = torch.cuda.LongTensor if use_cuda else torch.LongTensor
查看并绘制数据集中的图片
def imshow(inp, title=None):
# 将一张图打印显示出来,inp为一个张量,title为显示在图像上的文字
# 一般的张量格式为:channels * image_width * image_height
# 而一般的图像为 image_width * image_height * channels
# 所以,需要将张量中的 channels 转换到最后一个维度
inp = inp.numpy().transpose((1, 2, 0))
#由于在读入图像的时候所有图像的色彩都标准化了,因此我们需要先调回去
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
#将图像绘制出来
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # 暂停一会是为了能够将图像显示出来。
将训练数据集的第一个 batch 绘制出来
#获取第一个图像batch和标签
images, labels = next(iter(train_loader))
# 将这个batch中的图像制成表格绘制出来
out = torchvision.utils.make_grid(images)
imshow(out, title=[train_dataset.classes[x] for x in labels])
三、参照:训练一个普通的卷积神经网络
判断蚂蚁还是蜜蜂,这是个简单任务吗?
下面开始搭建一个简单的卷积神经网络模型
# 用于手写数字识别的卷积神经网络
depth = [4, 8]
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
#输入通道为1,输出通道为4,窗口大小为5,padding为2
self.conv1 = nn.Conv2d(3, 4, 5, padding = 2)
#一个窗口为2*2的pooling运算
self.pool = nn.MaxPool2d(2, 2)
#第二层卷积,输入通道为depth[0], 输出通道为depth[1],窗口wei15,padding为2
self.conv2 = nn.Conv2d(depth[0], depth[1], 5, padding = 2)
#一个线性连接层,输入尺寸为最后一层立方体的平铺,输出层512个节点
self.fc1 = nn.Linear(image_size // 4 * image_size // 4 * depth[1] , 512)
#最后一层线性分类单元,输入为
self.fc2 = nn.Linear(512, num_classes)
def forward(self, x):
#神经网络完成一步前馈运算的过程,从输入到输出
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
# 将立体的Tensor全部转换成一维的Tensor。两次pooling操作,所以图像维度减少了1/4
x = x.view(-1, image_size // 4 * image_size // 4 * depth[1])
x = F.relu(self.fc1(x)) #全链接,激活函数
x = F.dropout(x, training=self.training) #以默认为0.5的概率对这一层进行dropout操作
x = self.fc2(x) #全链接,激活函数
x = F.log_softmax(x, dim=1) #log_softmax可以理解为概率对数值
return x
准备训练
batch_size 行 num_classes 列的矩阵,labels 是数据中的正确答案
def rightness(predictions, labels):
# 对于任意一行(一个样本)的输出值的第1个维度,求最大,得到每一行的最大元素的下标
pred = torch.max(predictions.data, 1)[1]
# 将下标与labels中包含的类别进行比较,并累计得到比较正确的数量
rights = pred.eq(labels.data.view_as(pred)).sum()
# 返回正确的数量和这一次一共比较了多少元素
return rights, len(labels)
实例化模型,定义损失函数,优化器
# 加载网络
net = ConvNet()
# 如果有GPU就把网络加载到GPU中
net = net.cuda() if use_cuda else net
criterion = nn.CrossEntropyLoss() #Loss函数的定义
optimizer = optim.SGD(net.parameters(), lr = 0.0001, momentum=0.9)
把训练模型和验证模型的语句封装成函数
# 参数:
# data : Variable
# target: Variable
def train_model(data, target):
# 给网络模型做标记,标志说模型正在训练集上训练
# 这种区分主要是为了打开 net 的 training 标志
# 从而决定是否运行 dropout 与 batchNorm
net.train()
output = net(data) # 神经网络完成一次前馈的计算过程,得到预测输出output
loss = criterion(output, target) # 将output与标签target比较,计算误差
optimizer.zero_grad() # 清空梯度
loss.backward() # 反向传播
optimizer.step() # 一步随机梯度下降算法
# 计算准确率所需数值,返回数值为(正确样例数,总样本数)
right = rightness(output, target)
# 如果计算在 GPU 中,打印的数据再加载到CPU中
loss = loss.cpu() if use_cuda else loss
return right, loss
下面是验证模型的方法
# Evaluation Mode
def evaluation_model():
# net.eval() 给网络模型做标记,标志说模型现在是验证模式
# 此方法将模型 net 的 training 标志设置为 False
# 模型中将不会运行 dropout 与 batchNorm
net.eval()
vals = []
#对测试数据集进行循环
for data, target in val_loader:
data, target = Variable(data, requires_grad=True), Variable(target)
# 如果GPU可用,就把数据加载到GPU中
if use_cuda:
data, target = data.cuda(), target.cuda()
output = net(data) #将特征数据喂入网络,得到分类的输出
val = rightness(output, target) #获得正确样本数以及总样本数
vals.append(val) #记录结果
return vals
开始训练模型
record = [] #记录准确率等数值的容器
#开始训练循环
num_epochs = 20
best_model = net
best_r = 0.0
for epoch in range(num_epochs):
#optimizer = exp_lr_scheduler(optimizer, epoch)
train_rights = [] #记录训练数据集准确率的容器
train_losses = []
#针对容器中的每一个批进行循环
for batch_idx, (data, target) in enumerate(train_loader):
#将Tensor转化为Variable,data为图像,target为标签
data, target = Variable(data), Variable(target)
# 如果有GPU就把数据加载到GPU上
if use_cuda:
data, target = data.cuda(), target.cuda()
# 调用训练函数
right, loss = train_model(data, target)
train_rights.append(right) #将计算结果装到列表容器中
train_losses.append(loss.data.numpy())
# train_r 为一个二元组,分别记录训练集中分类正确的数量和该集合中总的样本数
train_r = (sum([tup[0] for tup in train_rights]), sum([tup[1] for tup in train_rights]))
#在测试集上分批运行,并计算总的正确率
vals = evaluation_model()
#计算准确率
val_r = (sum([tup[0] for tup in vals]), sum([tup[1] for tup in vals]))
val_ratio = 1.0*val_r[0].numpy()/val_r[1]
if val_ratio > best_r:
best_r = val_ratio
best_model = copy.deepcopy(net)
#打印准确率等数值,其中正确率为本训练周期Epoch开始后到目前撮的正确率的平均值
print('训练周期: {} \tLoss: {:.6f}\t训练正确率: {:.2f}%, 校验正确率: {:.2f}%'.format(
epoch, np.mean(train_losses), 100. * train_r[0].numpy() / train_r[1], 100. * val_r[0].numpy()/val_r[1]))
record.append([np.mean(train_losses), 1. * train_r[0].data.numpy() / train_r[1], 1. * val_r[0].data.numpy() / val_r[1]])
训练效果展示
#在测试集上分批运行,并计算总的正确率
net.eval() #标志模型当前为运行阶段
test_loss = 0
correct = 0
vals = []
#对测试数据集进行循环
for data, target in val_loader:
data, target = Variable(data, requires_grad=True), Variable(target)
if use_cuda:
data, target = data.cuda(), target.cuda()
output = net(data) #将特征数据喂入网络,得到分类的输出
val = rightness(output, target) #获得正确样本数以及总样本数
vals.append(val) #记录结果
#计算准确率
rights = (sum([tup[0] for tup in vals]), sum([tup[1] for tup in vals]))
right_rate = 1.0 * rights[0].data.numpy() / rights[1]
right_rate
事实表明,这种简单结构的卷积神经网络并不能将蚂蚁和蜜蜂这种复杂的图片分类正确,正确率勉强能达到 50% 上下,和瞎猜差别不大。
为什么模型预测的效果那么差?究其原因,是在于:
1、蚂蚁和蜜蜂的图像数据极其复杂,人类肉眼都不太容易一下子区分,因此简单的 CNN 无法应付这个分类任务
2、整个训练数据集仅仅有 244 个训练样本,这么小的数据量是无法训练大的卷积神经网络的
观察模型的训练误差曲线。
# 绘制误差率曲线
x = [x[0] for x in record]
y = [1 - x[1] for x in record]
z = [1 - x[2] for x in record]
#plt.plot(x)
plt.figure(figsize = (10, 7))
plt.plot(y)
plt.plot(z)
plt.xlabel('Epoch')
plt.ylabel('Error Rate')
四、加载已训练好的 ResNet 进行迁移学习
加载已训练的大型神经网络 ResNet
下面将加载 ResNet 模型,并观察模型的组成部分。
如果是第一次运行,那么模型会被下载到 ~/.torch/models/
文件夹中。
torch.utils.model_zoo.load_url('http://labfile.oss.aliyuncs.com/courses/1073/resnet18-5c106cde.pth')
# 加载模型库中的residual network,并设置pretrained为true,这样便可加载相应的权重
net = models.resnet18(pretrained=True)
#如果存在GPU,就将网络加载到GPU上
net = net.cuda() if use_cuda else net
# 将网络的架构打印出来
net
构建迁移网络
下面把 ResNet18 中的卷积模块作为特征提取层迁移过来,用于提取局部特征。
同时,将 ResNet18 中最后的全连接层(fc)替换,构建一个包含 512 个隐含节点的全连接层,后接两个结点的输出层,用于最后的分类输出。最终构建一个 20 层的深度网络。
# 读取最后线性层的输入单元数,这是前面各层卷积提取到的特征数量
num_ftrs = net.fc.in_features
# 重新定义一个全新的线性层,它的输出为2,原本是1000
net.fc = nn.Linear(num_ftrs, 2)
#如果存在GPU则将网络加载到GPU中
net.fc = net.fc.cuda() if use_cuda else net.fc
criterion = nn.CrossEntropyLoss() #Loss函数的定义
# 将网络的所有参数放入优化器中
optimizer = optim.SGD(net.parameters(), lr = 0.0001, momentum=0.9)
迁移学习的两种模式
否要更新这些旧模块的权重参数完全取决于我们采取的迁移学习方式,它主要包括有两种:
预训练模式和固定值模式。
预训练模式
在这种模式下,从 ResNet 迁移过来的权重视作新网络的初始权重,但是在训练的过程中则会被梯度下降算法改变数值。
record = [] #记录准确率等数值的容器
#开始训练循环
num_epochs = 20
net.train(True) # 给网络模型做标记,标志说模型在训练集上训练
best_model = net
best_r = 0.0
for epoch in range(num_epochs):
#optimizer = exp_lr_scheduler(optimizer, epoch)
train_rights = [] #记录训练数据集准确率的容器
train_losses = []
#针对容器中的每一个批进行循环
for batch_idx, (data, target) in enumerate(train_loader):
#将Tensor转化为Variable,data为图像,target为标签
data, target = Variable(data), Variable(target)
#如果存在GPU则将变量加载到GPU中
if use_cuda:
data, target = data.cuda(), target.cuda()
output = net(data) #完成一次预测
loss = criterion(output, target) #计算误差
optimizer.zero_grad() #清空梯度
loss.backward() #反向传播
optimizer.step() #一步随机梯度下降
#计算准确率所需数值,返回正确的数值为(正确样例数,总样本数)
right = rightness(output, target)
train_rights.append(right) #将计算结果装到列表容器中
loss = loss.cpu() if use_cuda else loss
train_losses.append(loss.data.numpy())
#if batch_idx % 20 == 0: #每间隔100个batch执行一次
#train_r为一个二元组,分别记录训练集中分类正确的数量和该集合中总的样本数
train_r = (sum([tup[0] for tup in train_rights]), sum([tup[1] for tup in train_rights]))
#在测试集上分批运行,并计算总的正确率
net.eval() #标志模型当前为运行阶段
test_loss = 0
correct = 0
vals = []
#对测试数据集进行循环
for data, target in val_loader:
#如果存在GPU则将变量加载到GPU中
if use_cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, requires_grad=True), Variable(target)
output = net(data) #将特征数据喂入网络,得到分类的输出
val = rightness(output, target) #获得正确样本数以及总样本数
vals.append(val) #记录结果
#计算准确率
val_r = (sum([tup[0] for tup in vals]), sum([tup[1] for tup in vals]))
val_ratio = 1.0*val_r[0].numpy()/val_r[1]
if val_ratio > best_r:
best_r = val_ratio
best_model = copy.deepcopy(net)
#打印准确率等数值,其中正确率为本训练周期Epoch开始后到目前撮的正确率的平均值
print('训练周期: {} \tLoss: {:.6f}\t训练正确率: {:.2f}%, 校验正确率: {:.2f}%'.format(
epoch, np.mean(train_losses), 100. * train_r[0].numpy() / train_r[1], 100. * val_r[0].numpy()/val_r[1]))
record.append([np.mean(train_losses), 1. * train_r[0].data.numpy() / train_r[1], 1. * val_r[0].data.numpy() / val_r[1]])
绘制训练误差曲线,观察训练过程。
x = [x[0] for x in record]
y = [1 - x[1] for x in record]
z = [1 - x[2] for x in record]
#plt.plot(x)
plt.figure(figsize = (10, 7))
plt.plot(y)
plt.plot(z)
plt.xlabel('Epoch')
plt.ylabel('Error Rate')
将预训练的模型用于测试数据,并举例绘制出分类效果。
def visualize_model(model, num_images=6):
images_so_far = 0
fig = plt.figure(figsize=(15,10))
for i, data in enumerate(val_loader):
inputs, labels = data
inputs, labels = Variable(inputs), Variable(labels)
if use_cuda:
inputs, labels = inputs.cuda(), labels.cuda()
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1)
preds = preds.cpu().numpy() if use_cuda else preds.numpy()
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot( 2,num_images//2, images_so_far)
ax.axis('off')
ax.set_title('predicted: {}'.format(val_dataset.classes[preds[j]]))
imshow(data[0][j])
if images_so_far == num_images:
return
visualize_model(net)
plt.ioff()
plt.show()
固定值模式
在这种模式下,迁移过来的部分网络在结构和权重上都保持固定的数值不会改变。训练过程仅针对迁移模块后面的全链接网络。当使用反向传播算法的时候,误差反传过程会在迁移模块中停止,从而不改变迁移模块中的权重数值。
# 加载residual网络模型
net = torchvision.models.resnet18(pretrained=True)
# 将模型放入GPU中
net = net.cuda() if use_cuda else net
# 循环网络,将所有参数设为不更新梯度信息
for param in net.parameters():
param.requires_grad = False
# 将网络最后一层线性层换掉
num_ftrs = net.fc.in_features
net.fc = nn.Linear(num_ftrs, 2)
net.fc = net.fc.cuda() if use_cuda else net.fc
criterion = nn.CrossEntropyLoss() #Loss函数的定义
# 仅将线性层的参数放入优化器中
optimizer = optim.SGD(net.fc.parameters(), lr = 0.001, momentum=0.9)
下面正式开始训练。
record = [] #记录准确率等数值的容器
#开始训练循环
num_epochs = 4
net.train(True) # 给网络模型做标记,标志说模型在训练集上训练
best_model = net
best_r = 0.0
for epoch in range(num_epochs):
#optimizer = exp_lr_scheduler(optimizer, epoch)
train_rights = [] #记录训练数据集准确率的容器
train_losses = []
#针对容器中的每一个批进行循环
for batch_idx, (data, target) in enumerate(train_loader):
#将Tensor转化为Variable,data为图像,target为标签
data, target = Variable(data), Variable(target)
if use_cuda:
data, target = data.cuda(), target.cuda()
output = net(data) #完成一次预测
loss = criterion(output, target) #计算误差
optimizer.zero_grad() #清空梯度
loss.backward() #反向传播
optimizer.step() #一步随机梯度下降
#计算准确率所需数值,返回正确的数值为(正确样例数,总样本数)
right = rightness(output, target)
train_rights.append(right) #将计算结果装到列表容器中
loss = loss.cpu() if use_cuda else loss
train_losses.append(loss.data.numpy())
#train_r为一个二元组,分别记录训练集中分类正确的数量和该集合中总的样本数
train_r = (sum([tup[0] for tup in train_rights]), sum([tup[1] for tup in train_rights]))
#在测试集上分批运行,并计算总的正确率
net.eval() #标志模型当前为运行阶段
test_loss = 0
correct = 0
vals = []
#对测试数据集进行循环
for data, target in val_loader:
data, target = Variable(data, requires_grad=True), Variable(target)
if use_cuda:
data, target = data.cuda(), target.cuda()
output = net(data) #将特征数据喂入网络,得到分类的输出
val = rightness(output, target) #获得正确样本数以及总样本数
vals.append(val) #记录结果
#计算准确率
val_r = (sum([tup[0] for tup in vals]), sum([tup[1] for tup in vals]))
val_ratio = 1.0*val_r[0].numpy()/val_r[1]
if val_ratio > best_r:
best_r = val_ratio
best_model = copy.deepcopy(net)
#打印准确率等数值,其中正确率为本训练周期Epoch开始后到目前撮的正确率的平均值
print('训练周期: {} \tLoss: {:.6f}\t训练正确率: {:.2f}%, 校验正确率: {:.2f}%'.format(
epoch, np.mean(train_losses), 100. * train_r[0].numpy() / train_r[1], 100. * val_r[0].numpy()/val_r[1]))
record.append([np.mean(train_losses), 1. * train_r[0].data.numpy() / train_r[1], 1. * val_r[0].data.numpy() / val_r[1]])
绘制训练误差曲线,观察训练过程。
# 打印误差曲线
x = [x[0] for x in record]
y = [1 - x[1] for x in record]
z = [1 - x[2] for x in record]
#plt.plot(x)
plt.figure(figsize = (10, 7))
plt.plot(y)
plt.plot(z)
plt.xlabel('Epoch')
plt.ylabel('Error Rate')
展示分类结果。
visualize_model(best_model)
plt.ioff()
plt.show()
五、系统化试验结果
首先先看一下作为实验参照的简单卷积神经网络取得的效果。
黄色曲线是测试数据集错误率,蓝色曲线是训练数据集错误率。
5.2 预训练迁移模型取得的效果!
首先可以看到整体的错误率比简单卷积神经网络低了很多。训练错误率可以稳定在 0.02 之下,测试错误率大约在 0.07 左右。因为在预训练模式下,模型对训练数据的拟合性比较强,所以训练错误率与测试错误率差别较大。
5.3 固定值迁移模型取得的效果
可以看到在固定值迁移模式下。训练错误率可以在 0.02 ~ 0.04 之间,比预训练模式稍高。测试错误率大约在 0.07 左右,与预训练模式差不多。固定值模式锁定了大部分权重,模型对训练数据的拟合性没那么强,所以训练错误率与测试错误率的差别也没那么大!