什么是Redis
Redis(Remote Dictionary Server) 是一个使用 C 语言编写的,开源的(BSD许可)高性能非关系型(NoSQL)的键值对数据库。
Redis 可以存储键和五种不同类型的值之间的映射。键的类型只能为字符串,值支持五种数据类型:字符串、列表、集合、散列表、有序集合。
与传统数据库不同的是 Redis 的数据是存在内存中的,所以读写速度非常快,因此 redis 被广泛应用于缓存方向,每秒可以处理超过 10万次读写操作,是已知性能最快的Key-Value DB。另外,Redis 也经常用来做分布式锁。除此之外,Redis 支持事务 、持久化、LUA脚本、LRU驱动事件、多种集群方案。
Redis有哪些优缺点
优点
- 读写性能优异, Redis能读的速度是110000次/s,写的速度是81000次/s。
- 支持数据持久化,支持AOF和RDB两种持久化方式。
- 支持事务,Redis的所有操作都是原子性的,同时Redis还支持对几个操作合并后的原子性执行。
- 数据结构丰富,除了支持string类型的value外还支持hash、set、zset、list等数据结构。
- 支持主从复制,主机会自动将数据同步到从机,可以进行读写分离。
缺点
- 数据库容量受到物理内存的限制,不能用作海量数据的高性能读写,因此Redis适合的场景主要局限在较小数据量的高性能操作和运算上。
- Redis 不具备自动容错和恢复功能,主机从机的宕机都会导致前端部分读写请求失败,需要等待机器重启或者手动切换前端的IP才能恢复。
- 主机宕机,宕机前有部分数据未能及时同步到从机,切换IP后还会引入数据不一致的问题,降低了系统的可用性。
- Redis 较难支持在线扩容,在集群容量达到上限时在线扩容会变得很复杂。为避免这一问题,运维人员在系统上线时必须确保有足够的空间,这对资源造成了很大的浪费。
为什么要用 Redis /为什么要用缓存
主要从“高性能”和“高并发”这两点来看待这个问题。
高性能:
假如用户第一次访问数据库中的某些数据。这个过程会比较慢,因为是从硬盘上读取的。将该用户访问的数据存在数缓存中,这样下一次再访问这些数据的时候就可以直接从缓存中获取了。操作缓存就是直接操作内存,所以速度相当快。如果数据库中的对应数据改变的之后,同步改变缓存中相应的数据即可!
高并发:
直接操作缓存能够承受的请求是远远大于直接访问数据库的,所以我们可以考虑把数据库中的部分数据转移到缓存中去,这样用户的一部分请求会直接到缓存这里而不用经过数据库。
为什么要用 Redis 而不用 map/guava 做缓存?
缓存分为本地缓存和分布式缓存。以 Java 为例,使用自带的 map 或者 guava 实现的是本地缓存,最主要的特点是轻量以及快速,生命周期随着 jvm 的销毁而结束,并且在多实例的情况下,每个实例都需要各自保存一份缓存,缓存不具有一致性。
使用 redis 或 memcached 之类的称为分布式缓存,在多实例的情况下,各实例共用一份缓存数据,缓存具有一致性。缺点是需要保持 redis 或 memcached服务的高可用,整个程序架构上较为复杂。
Redis为什么这么快
1、完全基于内存,绝大部分请求是纯粹的内存操作,非常快速。数据存在内存中,类似于 HashMap,HashMap 的优势就是查找和操作的时间复杂度都是O(1);
2、数据结构简单,对数据操作也简单,Redis 中的数据结构是专门进行设计的;
3、采用单线程,避免了不必要的上下文切换和竞争条件,也不存在多进程或者多线程导致的切换而消耗 CPU,不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗;
4、使用多路 I/O 复用模型,非阻塞 IO;
5、使用底层模型不同,它们之间底层实现方式以及与客户端之间通信的应用协议不一样,Redis 直接自己构建了 VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求;
数据类型
Redis有哪些数据类型
Redis主要有5种数据类型,包括String,List,Set,Zset,Hash,满足大部分的使用要求
数据类型 | 可以存储的值 | 操作 | 应用场景 |
STRING | 字符串、整数或者浮点数 | 对整个字符串或者字符串的其中一部分执行操作 对整数和浮点数执行自增或者自减操作 | 做简单的键值对缓存 |
LIST | 列表 | 从两端压入或者弹出元素 对单个或者多个元素进行修剪, 只保留一个范围内的元素 | 存储一些列表型的数据结构,类似粉丝列表、文章的评论列表之类的数据 |
SET | 无序集合 | 添加、获取、移除单个元素 检查一个元素是否存在于集合中 计算交集、并集、差集 从集合里面随机获取元素 | 交集、并集、差集的操作,比如交集,可以把两个人的粉丝列表整一个交集 |
HASH | 包含键值对的无序散列表 | 添加、获取、移除单个键值对 获取所有键值对 检查某个键是否存在 | 结构化的数据,比如一个对象 |
ZSET | 有序集合 | 添加、获取、删除元素 根据分值范围或者成员来获取元素 计算一个键的排名 | 去重但可以排序,如获取排名前几名的用户 |
Redis的应用场景
总结一
计数器
可以对 String 进行自增自减运算,从而实现计数器功能。Redis 这种内存型数据库的读写性能非常高,很适合存储频繁读写的计数量。
缓存
将热点数据放到内存中,设置内存的最大使用量以及淘汰策略来保证缓存的命中率。
会话缓存
可以使用 Redis 来统一存储多台应用服务器的会话信息。当应用服务器不再存储用户的会话信息,也就不再具有状态,一个用户可以请求任意一个应用服务器,从而更容易实现高可用性以及可伸缩性。
全页缓存(FPC)
除基本的会话token之外,Redis还提供很简便的FPC平台。以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。
查找表
例如 DNS 记录就很适合使用 Redis 进行存储。查找表和缓存类似,也是利用了 Redis 快速的查找特性。但是查找表的内容不能失效,而缓存的内容可以失效,因为缓存不作为可靠的数据来源。
消息队列(发布/订阅功能)
List 是一个双向链表,可以通过 lpush 和 rpop 写入和读取消息。不过最好使用 Kafka、RabbitMQ 等消息中间件。
分布式锁实现
在分布式场景下,无法使用单机环境下的锁来对多个节点上的进程进行同步。可以使用 Redis 自带的 SETNX 命令实现分布式锁,除此之外,还可以使用官方提供的 RedLock 分布式锁实现。
其它
Set 可以实现交集、并集等操作,从而实现共同好友等功能。ZSet 可以实现有序性操作,从而实现排行榜等功能。
总结二
Redis相比其他缓存,有一个非常大的优势,就是支持多种数据类型。
数据类型说明string字符串,最简单的k-v存储hashhash格式,value为field和value,适合ID-Detail这样的场景。list简单的list,顺序列表,支持首位或者末尾插入数据set无序list,查找速度快,适合交集、并集、差集处理sorted set有序的set
其实,通过上面的数据类型的特性,基本就能想到合适的应用场景了。
string——适合最简单的k-v存储,类似于memcached的存储结构,短信验证码,配置信息等,就用这种类型来存储。
hash——一般key为ID或者唯一标示,value对应的就是详情了。如商品详情,个人信息详情,新闻详情等。
list——因为list是有序的,比较适合存储一些有序且数据相对固定的数据。如省市区表、字典表等。因为list是有序的,适合根据写入的时间来排序,如:最新的***,消息队列等。
set——可以简单的理解为ID-List的模式,如微博中一个人有哪些好友,set最牛的地方在于,可以对两个set提供交集、并集、差集操作。例如:查找两个人共同的好友等。
Sorted Set——是set的增强版本,增加了一个score参数,自动会根据score的值进行排序。比较适合类似于top 10等不根据插入的时间来排序的数据。
如上所述,虽然Redis不像关系数据库那么复杂的数据结构,但是,也能适合很多场景,比一般的缓存数据结构要多。了解每种数据结构适合的业务场景,不仅有利于提升开发效率,也能有效利用Redis的性能。