如何防止Redis脑裂导致数据丢失?


1 人赞同了该文章

所谓的脑裂,就是指在主从集群中,同时有两个主节点,它们都能接收写请求。而脑裂最直接的影响,就是客户端不知道应该往哪个主节点写入数据,结果就是不同的客户端会往不同的主节点上写入数据。而且,严重的话,脑裂会进一步导致数据丢失。

为什么会发生脑裂?

1.确认是不是数据同步出现了问题

在主从集群中发生数据丢失,最常见的原因就是主库的数据还没有同步到从库,结果主库发生了故障,等从库升级为主库后,未同步的数据就丢失了。

如果是这种情况的数据丢失,我们可以通过比对主从库上的复制进度差值来进行判断,也就是计算 master_repl_offset 和 slave_repl_offset 的差值。如果从库上的 slave_repl_offset 小于原主库的 master_repl_offset,那么,我们就可以认定数据丢失是由数据同步未完成导致的。

2.排查客户端的操作日志,发现脑裂现象

在排查客户端的操作日志时,我们发现,在主从切换后的一段时间内,有一个客户端仍然在和原主库通信,并没有和升级的新主库进行交互。这就相当于主从集群中同时有了两个主库。根据这个迹象,我们就想到了在分布式主从集群发生故障时会出现的一个问题:脑裂。

但是,不同客户端给两个主库发送数据写操作,按道理来说,只会导致新数据会分布在不同的主库上,并不会造成数据丢失。那么,为什么我们的数据仍然丢失了呢?

3.发现是原主库假故障导致的脑裂

我们是采用哨兵机制进行主从切换的,当主从切换发生时,一定是有超过预设数量(quorum 配置项)的哨兵实例和主库的心跳都超时了,才会把主库判断为客观下线,然后,哨兵开始执行切换操作。哨兵切换完成后,客户端会和新主库进行通信,发送请求操作。

但是,在切换过程中,既然客户端仍然和原主库通信,这就表明,原主库并没有真的发生故障(例如主库进程挂掉)。

为什么脑裂会导致数据丢失?

主从切换后,从库一旦升级为新主库,哨兵就会让原主库执行 slave of 命令,和新主库重新进行全量同步。而在全量同步执行的最后阶段,原主库需要清空本地的数据,加载新主库发送的 RDB 文件,这样一来,原主库在主从切换期间保存的新写数据就丢失了。

如何应对脑裂问题?

Redis 已经提供了两个配置项来限制主库的请求处理,分别是 min-slaves-to-write 和 min-slaves-max-lag。

min-slaves-to-write:这个配置项设置了主库能进行数据同步的最少从库数量; min-slaves-max-lag:这个配置项设置了主从库间进行数据复制时,从库给主库发送 ACK 消息的最大延迟(以秒为单位)。 我们可以把 min-slaves-to-write 和 min-slaves-max-lag 这两个配置项搭配起来使用,分别给它们设置一定的阈值,假设为 N 和 T。这两个配置项组合后的要求是,主库连接的从库中至少有 N 个从库,和主库进行数据复制时的 ACK 消息延迟不能超过 T 秒,否则,主库就不会再接收客户端的请求了。

即使原主库是假故障,它在假故障期间也无法响应哨兵心跳,也不能和从库进行同步,自然也就无法和从库进行 ACK 确认了。这样一来,min-slaves-to-write 和 min-slaves-max-lag 的组合要求就无法得到满足,原主库就会被限制接收客户端请求,客户端也就不能在原主库中写入新数据了。

 

如果有来生,要做一片树叶。 春天恋上枝,炎夏恋上水。 深秋恋上土,东来化作泥。 润物细无声,生生世世恋红尘。