负载均衡
负载均衡,它的职责是将网络请求,或者其他形式的负载“均摊”到不同的机器上。避免集群中部分服务器压力过大,而另一些服务器比较空闲的情况。通过负载均衡,可以让每台服务器获取到适合自己处理能力的负载。在为高负载服务器分流的同时,还可以避免资源浪费,一举两得。负载均衡可分为软件负载均衡和硬件负载均衡。在我们日常开发中,一般很难接触到硬件负载均衡。但软件负载均衡还是可以接触到的,比如 Nginx。
在 Dubbo 中,也有负载均衡的概念和相应的实现。Dubbo 需要对服务消费者的调用请求进行分配,避免少数服务提供者负载过大。服务提供者负载过大,会导致部分请求超时。
因此将负载均衡到每个服务提供者上,是非常必要的。Dubbo 提供了4种负载均衡实现,分别是基于权重随机算法的 RandomLoadBalance、基于最少活跃调用数算法的 LeastActiveLoadBalance、基于 hash 一致性的 ConsistentHashLoadBalance,以及基于加权轮询算法的 RoundRobinLoadBalance。
这几个负载均衡算法代码不是很长,但是想看懂也不是很容易,需要大家对这几个算法的原理有一定了解才行。如果不是很了解,也没不用太担心。我们会在分析每个算法的源码之前,对算法原理进行简单的讲解,帮助大家建立初步的印象。
缺省为random随机调用.
Random LoadBalance
随机,按权重设置随机概率。
RandomLoadBalance 是加权随机算法的具体实现,它的算法思想很简单。假设我们有一组服务器 servers = [A, B, C],他们对应的权重为 weights = [5, 3, 2],权重总和为10。现在把这些权重值平铺在一维坐标值上,[0, 5) 区间属于服务器 A,[5, 8) 区间属于服务器 B,[8, 10) 区间属于服务器 C。接下来通过随机数生成器生成一个范围在 [0, 10) 之间的随机数,然后计算这个随机数会落到哪个区间上。比如数字3会落到服务器 A 对应的区间上,此时返回服务器 A 即可。权重越大的机器,在坐标轴上对应的区间范围就越大,因此随机数生成器生成的数字就会有更大的概率落到此区间内。只要随机数生成器产生的随机数分布性很好,在经过多次选择后,每个服务器被选中的次数比例接近其权重比例。比如,经过一万次选择后,服务器 A 被选中的次数大约为5000次,服务器 B 被选中的次数约为3000次,服务器 C 被选中的次数约为2000次。
RoundRobin LoadBalance
轮循,按公约后的权重设置轮循比率。
我们先来了解一下什么是加权轮询。这里从最简单的轮询开始讲起,所谓轮询是指将请求轮流分配给每台服务器。举个例子,我们有三台服务器 A、B、C。我们将第一个请求分配给服务器 A,第二个请求分配给服务器 B,第三个请求分配给服务器 C,第四个请求再次分配给服务器 A。这个过程就叫做轮询。轮询是一种无状态负载均衡算法,实现简单,适用于每台服务器性能相近的场景下。但现实情况下,我们并不能保证每台服务器性能均相近。如果我们将等量的请求分配给性能较差的服务器,这显然是不合理的。因此,这个时候我们需要对轮询过程进行加权,以调控每台服务器的负载。经过加权后,每台服务器能够得到的请求数比例,接近或等于他们的权重比。比如服务器 A、B、C 权重比为 5:2:1。那么在8次请求中,服务器 A 将收到其中的5次请求,服务器 B 会收到其中的2次请求,服务器 C 则收到其中的1次请求。
LeastActive LoadBalance
翻译过来是最小活跃数负载均衡。活跃调用数越小,表明该服务提供者效率越高,单位时间内可处理更多的请求。此时应优先将请求分配给该服务提供者。在具体实现中,每个服务提供者对应一个活跃数 active。初始情况下,所有服务提供者活跃数均为0。每收到一个请求,活跃数加1,完成请求后则将活跃数减1。在服务运行一段时间后,性能好的服务提供者处理请求的速度更快,因此活跃数下降的也越快,此时这样的服务提供者能够优先获取到新的服务请求、这就是最小活跃数负载均衡算法的基本思想。除了最小活跃数,LeastActiveLoadBalance 在实现上还引入了权重值。所以准确的来说,LeastActiveLoadBalance 是基于加权最小活跃数算法实现的。举个例子说明一下,在一个服务提供者集群中,有两个性能优异的服务提供者。某一时刻它们的活跃数相同,此时 Dubbo 会根据它们的权重去分配请求,权重越大,获取到新请求的概率就越大。如果两个服务提供者权重相同,此时随机选择一个即可。
ConsistentHash LoadBalance
该类是负载均衡基于 hash 一致性的逻辑实现。一致性哈希算法由麻省理工学院的 Karger 及其合作者于1997年提供出的,一开始被大量运用于缓存系统的负载均衡。它的工作原理是这样的:首先根据 ip 或其他的信息为缓存节点生成一个 hash,在dubbo中使用参数进行计算hash。并将这个 hash 投射到 [0, 232 - 1] 的圆环上,当有查询或写入请求时,则生成一个 hash 值。然后查找第一个大于或等于该 hash 值的缓存节点,并到这个节点中查询或写入缓存项。如果当前节点挂了,则在下一次查询或写入缓存时,为缓存项查找另一个大于其 hash 值的缓存节点即可。大致效果如下图所示(引用一下官网的图)
每个缓存节点在圆环上占据一个位置。如果缓存项的 key 的 hash 值小于缓存节点 hash 值,则到该缓存节点中存储或读取缓存项,这里有两个概念不要弄混,缓存节点就好比dubbo中的服务提供者,会有很多的服务提供者,而缓存项就好比是服务引用的消费者。比如下面绿色点对应的缓存项也就是服务消费者将会被存储到 cache-2 节点中。由于 cache-3 挂了,原本应该存到该节点中的缓存项也就是服务消费者最终会存储到 cache-4 节点中,也就是调用cache-4 这个服务提供者。
但是在hash一致性算法并不能够保证hash算法的平衡性,就拿上面的例子来看,cache-3挂掉了,那该节点下的所有缓存项都要存储到 cache-4 节点中,这就导致hash值低的一直往高的存储,会面临一个不平衡的现象,见下图:
可以看到最后会变成类似不平衡的现象,那我们应该怎么避免这样的事情,做到平衡性,那就需要引入虚拟节点,虚拟节点是实际节点在 hash 空间的复制品,“虚拟节点”在 hash 空间中以hash值排列。比如下图:
可以看到各个节点都被均匀分布在圆环上,而某一个服务提供者居然有多个节点存在,分别跟其他节点交错排列,这样做的目的就是避免数据倾斜问题,也就是由于节点不够分散,导致大量请求落到了同一个节点上,而其他节点只会接收到了少量请求的情况。类似第二张图的情况。
连接超时timeout
毫秒为单位 默认 1000
必须要设置服务的处理的超时时间