Java中的线程池是应用场景最多的并发编程模型,很多需要异步或并发执行任务的程序都可以使用线程池。在程序中合理的利用线程池能够有如下好处:


    1):降低资源消耗。通过重复利用已创建的线程降低线程创建以及销毁造成的消耗。


    2):提高响应速度。当任务到达时,可以不需要等待线程的创建就能立即执行。


    3):提高线程可管理性。线程是稀缺资源,如果无限制的创建,不仅消耗资源,还会降低系统的稳定性,使用线程池可以统一分配、调优和监控。



1、ThreadPoolExecutor相关类图




java new Thread执行完后怎么自动释放 java threadexecutor_ThreadPoolExecutor




2、ThreadPoolExecutor类说明


ThreadPoolExecutor类是线程池中最核心的一个类,先了解这个类。可以看到ThreadPoolExecutor类继承自AbstractExecutorService类。AbstractExecutorService中定义实现了submit(Rnnable task,T result)方法,而AbstractExecutorService实现了Executor接口,该接口中定义了execute(Runnable command)方法。


1)构造器


       ThreadPoolExecutor提供了四个构造器方法,但是他们最终都会调用下面这个构造器,代码如下:

public ThreadPoolExecutor(int corePoolSize, 

 

                                int maximumPoolSize, 

 

                                long keepAliveTime, 

 

                                TimeUnit unit, 

 

                                BlockingQueue<Runnable> workQueue, 

 

                                ThreadFactory threadFactory, 

 

                                RejectedExecutionHandler handler) { 

 

          if (corePoolSize < 0 || 

 

              maximumPoolSize <= 0 || 

 

              maximumPoolSize < corePoolSize || 

 

              keepAliveTime < 0) 

 

              throw new IllegalArgumentException(); 

 

          if (workQueue == null || threadFactory == null || handler == null) 

 

              throw new NullPointerException(); 

 

          this.corePoolSize = corePoolSize; 

 

          this.maximumPoolSize = maximumPoolSize; 

 

          this.workQueue = workQueue; 

 

          this.keepAliveTime = unit.toNanos(keepAliveTime); 

 

          this.threadFactory = threadFactory; 

 

          this.handler = handler; 

 

      }

   下面说明构造器中各个参数的含义:


  • corePoolSize  :核心池的大小。在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待有任务到来才创建线程去执行任务,除非调用了prestartAllCoreThreads()或者prestartCoreThread()方法,从这2个方法的名字就可以看出,是预创建线程的意思,即在没有任务到来之前就创建corePoolSize个线程或者一个线程。默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中;
  •  maximumPoolSize:线程池最大线程数,它表示在线程池中最多能创建多少个线程; 


  •  keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0;    


  • unit:参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性:

   

TimeUnit.DAYS;//天       
 
        TimeUnit.HOURS;//小时
 
        TimeUnit.MINUTES;//分钟
 
        TimeUnit.SECONDS;//秒
 
        TimeUnit.MILLISECONDS;//毫秒
 
        TimeUnit.MICROSECONDS;//微秒
 
        TimeUnit.NANOSECONDS;//纳秒
 
• workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择:
 
    ArrayBlockingQueue:一个基于数组的有界阻塞队列,此队列按FIFO原则对元素进行排序。
 
 LinkedBlockingQueue:一个基于链表的阻塞队列,如不指定大小,默认队列界限为最大的整数值,此队列按FIFO原则对元素进行排序,吞
 
                                           吐量高  于 
 ArrayBlockingQueue。
 
   SynchronousQueue:一个不存储元素的阻塞队列,每个插入的元素,必须等到一个线程调用移除操作,否则一直阻塞。
 
             PriorityBlockingQueue:一个具有优先级的阻塞队列。
 
• threadFactory:线程工厂,主要用来创建工作线程;
 
• handler:表示当拒绝处理任务时的策略,有以下四种取值:      
         
   ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。  
             ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。 
             ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)。 
             ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务 。


ThreadPoolExecutor其他重要方法


execute()方法实际上是Executor中声明的方法,在ThreadPoolExecutor进行了具体的实现,这个方法是ThreadPoolExecutor的核心方法,通过这个方法可以向线程池提交一个任务,交由线程池去执行。


ubmit()方法是在ExecutorService中声明的方法,在AbstractExecutorService就已经有了具体的实现,在ThreadPoolExecutor中并没有对其进行重写,这个方法也是用来向线程池提交任务的,但是它和execute()方法不同,它能够返回任务执行的结果,去看submit()方法的实现,会发现它实际上还是调用的execute()方法,只不过它利用了Future来获取任务执行结果。


 

public <T> Future<T> submit(Runnable task, T result) { 

 

          if (task == null) throw new NullPointerException(); 

 
     RunnableFuture<T> ftask = newTaskFor(task, result);
 
    execute(ftask);
 

          return ftask; 

 

      }


shutdown()和shutdownNow()都是用来关闭线程池的。



3、线程池的实现原理


   1) 重要类型成员


    线程池实现时,内部重要的成员如下,部分成员在上面介绍构造函数时,已经加以说明。


private final BlockingQueue<Runnable> workQueue;              //任务缓存队列,用来存放等待执行的任务 

 

  private final ReentrantLock mainLock = new ReentrantLock();   //线程池的主要状态锁,对线程池状态(比如线程池大小 

 

                                                                //、runState等)的改变都要使用这个锁 

 

  private final HashSet<Worker> workers = new HashSet<Worker>();  //用来存放工作集 

 

  private volatile long  keepAliveTime;    //线程存活时间    

 

  private volatile boolean allowCoreThreadTimeOut;   //是否允许为核心线程设置存活时间 

 

  private volatile int   corePoolSize;     //核心池的大小(即线程池中的线程数目大于这个参数时,提交的任务会被放进任务缓存队列) 

 

 

 

  private volatile RejectedExecutionHandler handler; //任务拒绝策略 

 

  private volatile ThreadFactory threadFactory;   //线程工厂,用来创建线程 

 
  
 

  private long completedTaskCount;   //用来记录已经执行完毕的任务个数

2)向线程池提交任务的实现原理


    execute方法代码如下:


 

public void execute(Runnable command) { 
 

          if (command == null) 

 

              throw new NullPointerException(); 

 

          /* 

 

           * Proceed in 3 steps: 

 

           * 

 

           * 1. If fewer than corePoolSize threads are running, try to 

 

           * start a new thread with the given command as its first 

 

           * task.  The call to addWorker atomically checks runState and 

 

           * workerCount, and so prevents false alarms that would add 

 

           * threads when it shouldn't, by returning false. 

 

           * 

 

           * 2. If a task can be successfully queued, then we still need 

 

           * to double-check whether we should have added a thread 

 

           * (because existing ones died since last checking) or that 

 

           * the pool shut down since entry into this method. So we 

 

           * recheck state and if necessary roll back the enqueuing if 

 

           * stopped, or start a new thread if there are none. 

 

           * 

 

           * 3. If we cannot queue task, then we try to add a new 

 

           * thread.  If it fails, we know we are shut down or saturated 

 

           * and so reject the task. 

 

           */ 

 

          int c = ctl.get(); 

 

          if (workerCountOf(c) < corePoolSize) { 

 

              if (addWorker(command, true)) 

 

                  return; 

 

              c = ctl.get(); 

 

          } 

 

          if (isRunning(c) && workQueue.offer(command)) { 

 

              int recheck = ctl.get(); 

 

              if (! isRunning(recheck) && remove(command)) 

 

                  reject(command); 

 

              else if (workerCountOf(recheck) == 0) 

 

                  addWorker(null, false); 

 

          } 

 

          else if (!addWorker(command, false)) 

 

              reject(command); 

 

      }

   当向线程池提交执行任务时有如下处理过程:


         1、线程池判断核心线程池里当前线程数是否达到的corePoolSize大小,如果不是则创建一个新的工作线程来执行任务。如果当前已有corePoolSize个工作线程,则进入下一过程。


         2、线程池试图添加任务到任务队列中,如果成功,则进行再次验证,确定是否需要添加一个工作线程。如果添加任务队列失败,表示队列已满,则将进行下一步过程。 


        3、线程池试着添加一个新的线程来执行任务,如果不能成功,则执行饱和策略来处理这个任务。



3)工作线程Worker的实现


private final class Worker 

 

          extends AbstractQueuedSynchronizer 

 

          implements Runnable 

 

      { 

 

          /** 

 

           * This class will never be serialized, but we provide a 

 

           * serialVersionUID to suppress a javac warning. 

 

           */ 

 

          private static final long serialVersionUID = 6138294804551838833L; 

 
 

          /** Thread this worker is running in.  Null if factory fails. */ 

 

          final Thread thread; 

 

          /** Initial task to run.  Possibly null. */ 

 

          Runnable firstTask; 

 

          /** Per-thread task counter */ 

 

          volatile long completedTasks; 

 
 

          /** 

 

           * Creates with given first task and thread from ThreadFactory. 

 

           * @param firstTask the first task (null if none) 

 

           */ 

 
  Worker(Runnable firstTask) {
 
            setState(-1); // inhibit interrupts until runWorker
 
            this.firstTask = firstTask;
 
            this.thread = getThreadFactory().newThread(this);
 
        }
 
 

          /** Delegates main run loop to outer runWorker  */ 

 
    public void run() {
 
            runWorker(this);
 
        }
 
 

          // Lock methods 

 

          // 

 

          // The value 0 represents the unlocked state. 

 

          // The value 1 represents the locked state. 

 
 

          protected boolean isHeldExclusively() { 

 

              return getState() != 0; 

 

          } 

 
 

          protected boolean tryAcquire(int unused) { 

 

              if (compareAndSetState(0, 1)) { 

 

                  setExclusiveOwnerThread(Thread.currentThread()); 

 

                  return true; 

 

              } 

 

              return false; 

 

          } 

 
 

          protected boolean tryRelease(int unused) { 

 

              setExclusiveOwnerThread(null); 

 

              setState(0); 

 

              return true; 

 

          } 

 
 

          public void lock()        { acquire(1); } 

 

          public boolean tryLock()  { return tryAcquire(1); } 

 

          public void unlock()      { release(1); } 

 

          public boolean isLocked() { return isHeldExclusively(); } 

 
 
  void interruptIfStarted() {
 
            Thread t;
 
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
 
                try {
 
                    t.interrupt();
 
                } catch (SecurityException ignore) {
 
                }
 
            }
 
        }
 

      }

线程池创建线程时,会将线程封装在工作线程Worker中,工作线程在执行完创建时的任务后,还会循环的获取工作队列中的任务来执行。具体在函数

runWorker(this)函数中。 

   final void runWorker(Worker w) { 

 

          Thread wt = Thread.currentThread(); 

 

          Runnable task = w.firstTask; 

 

          w.firstTask = null; 

 

          w.unlock(); // allow interrupts 

 

          boolean completedAbruptly = true; 

 

          try { 

 

              while (task != null || (task = getTask()) != null) { 

 

                  w.lock(); 

 

                  // If pool is stopping, ensure thread is interrupted; 

 

                  // if not, ensure thread is not interrupted.  This 

 

                  // requires a recheck in second case to deal with 

 

                  // shutdownNow race while clearing interrupt 

 

                  if ((runStateAtLeast(ctl.get(), STOP) || 

 

                       (Thread.interrupted() && 

 

                        runStateAtLeast(ctl.get(), STOP))) && 

 

                      !wt.isInterrupted()) 

 

                      wt.interrupt(); 

 

                  try { 

 

                      beforeExecute(wt, task); 

 

                      Throwable thrown = null; 

 

                      try { 

 

                          task.run(); 

 

                      } catch (RuntimeException x) { 

 

                          thrown = x; throw x; 

 

                      } catch (Error x) { 

 

                          thrown = x; throw x; 

 

                      } catch (Throwable x) { 

 

                          thrown = x; throw new Error(x); 

 

                      } finally { 

 

                          afterExecute(task, thrown); 

 

                      } 

 

                  } finally { 

 

                      task = null; 

 

                      w.completedTasks++; 

 

                      w.unlock(); 

 

                  } 

 

              } 

 

              completedAbruptly = false; 

 

          } finally { 

 

              processWorkerExit(w, completedAbruptly); 

 

          } 

 

      }

  线程池的关闭


ThreadPoolExecutor提供了两个方法,用于线程池的关闭,分别是shutdown()和shutdownNow(),其中:


  • shutdown():不会立即终止线程池,而是要等所有任务缓存队列中的任务都执行完后才终止,但再也不会接受新的任务
  • shutdownNow():立即终止线程池,并尝试打断正在执行的任务,并且清空任务缓存队列,返回尚未执行的任务

public void shutdown() { 

 

          final ReentrantLock mainLock = this.mainLock; 

 

          mainLock.lock(); 

 

          try { 

 

              checkShutdownAccess(); 

 

              advanceRunState(SHUTDOWN); 

 

              interruptIdleWorkers(); 

 

              onShutdown(); // hook for ScheduledThreadPoolExecutor 

 

          } finally { 

 

              mainLock.unlock(); 

 

          } 

 

          tryTerminate(); 

 

      } 

 

  3、线程池的使用示例 

 

  public class Test { 

 

       public static void main(String[] args) {    

 

           ThreadPoolExecutor executor = new ThreadPoolExecutor(5, 10, 200, TimeUnit.MILLISECONDS, 

 

                   new ArrayBlockingQueue<Runnable>(5)); 

 

            

 

           for(int i=0;i<15;i++){ 

 

               MyTask myTask = new MyTask(i); 

 

               executor.execute(myTask); 

 

               System.out.println("线程池中线程数目:"+executor.getPoolSize()+",队列中等待执行的任务数目:"+ 

 

               executor.getQueue().size()+",已执行玩别的任务数目:"+executor.getCompletedTaskCount()); 

 

           } 

 

           executor.shutdown(); 

 

       } 

 

  } 

 

  class MyTask implements Runnable { 

 

      private int taskNum; 

 

        

 

      public MyTask(int num) { 

 

          this.taskNum = num; 

 

      } 

 

        

 

      @Override 

 

      public void run() { 

 

          System.out.println("正在执行task "+taskNum); 

 

          try { 

 

              Thread.currentThread().sleep(4000); 

 

          } catch (InterruptedException e) { 

 

              e.printStackTrace(); 

 

          } 

 

          System.out.println("task "+taskNum+"执行完毕"); 

 

      } 

 

  }


4、合理的配置线程池


      一般需要根据任务的类型来配置线程池大小:


 NCPU+1

NCPU